A new unified arc-length method for damage mechanics problems

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

[1]  Daniel F. Kienle,et al.  Truncated nonsmooth Newton multigrid for phase-field brittle-fracture problems, with analysis , 2023, Computational Mechanics.

[2]  Panos Pantidis,et al.  Integrated Finite Element Neural Network (I-FENN) for non-local continuum damage mechanics , 2022, Computer Methods in Applied Mechanics and Engineering.

[3]  Zhanhe Liu,et al.  Continuum Damage Mechanics based probabilistic fatigue life prediction for metallic material , 2022, Journal of Materials Research and Technology.

[4]  C. Augarde,et al.  A displacement-controlled arc-length solution scheme , 2022, Computers & Structures.

[5]  H. Waisman,et al.  Dual length scale non-local model to represent damage and transport in porous media , 2021, Computer Methods in Applied Mechanics and Engineering.

[6]  Timon Rabczuk,et al.  A robust monolithic solver for phase-field fracture integrated with fracture energy based arc-length method and under-relaxation , 2021, Computer Methods in Applied Mechanics and Engineering.

[7]  G. Castellazzi,et al.  A staggered multiphysics framework for salt crystallization-induced damage in porous building materials , 2021 .

[8]  Taehyo Park,et al.  Local and non-local damage model with extended stress decomposition for concrete , 2021 .

[9]  Zhi-qian Zhang,et al.  Phase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element method , 2020 .

[10]  Daniel F. Kienle,et al.  Truncated nonsmooth Newton multigrid for phase-field brittle-fracture problems, with analysis , 2020, Computational Mechanics.

[11]  M. Azadi,et al.  Continuum Damage Mechanics for Creep Lifetime Estimation in Polymer Matrix Composites at Various Temperatures , 2020 .

[12]  Golbert Aloliga,et al.  Comparative Study of Numerical Methods for Solving Non-linear Equations Using Manual Computation , 2020, Mathematics Letters.

[13]  Ulrich Langer,et al.  Matrix-free multigrid solvers for phase-field fracture problems , 2019, Computer Methods in Applied Mechanics and Engineering.

[14]  H. Altenbach,et al.  A Damage Mechanics Based Cohesive Zone Model with Damage Gradient Extension for Creep-Fatigue-Interaction , 2019, Key Engineering Materials.

[15]  Timon Rabczuk,et al.  Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies , 2018, Adv. Eng. Softw..

[16]  Mostafa E. Mobasher,et al.  Non-local formulation for transport and damage in porous media , 2017 .

[17]  Leong Hien Poh,et al.  Localizing gradient damage model with decreasing interactions , 2017 .

[18]  H. Waisman,et al.  A Prony-series type viscoelastic solid coupled with a continuum damage law for polar ice modeling , 2016 .

[19]  H. Waisman,et al.  Adaptive modeling of damage growth using a coupled FEM/BEM approach , 2016 .

[20]  Ehiwario,et al.  Comparative Study of Bisection, Newton-Raphson and Secant Methods of Root- Finding Problems , 2014 .

[21]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[22]  Yu-Hong Dai,et al.  A perfect example for the BFGS method , 2013, Math. Program..

[23]  E. Chaves Notes on Continuum Mechanics , 2013 .

[24]  Christian Miehe,et al.  Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation , 2012, International Journal of Fracture.

[25]  Daniel Rixen,et al.  Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials , 2011 .

[26]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[27]  Kaitai Li,et al.  Characteristic stabilized finite element method for the transient Navier–Stokes equations , 2010 .

[28]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[29]  V. Dattoma,et al.  Fatigue life prediction of notched components based on a new nonlinear continuum damage mechanics model , 2010 .

[30]  S. Oyadiji,et al.  Computations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element method , 2009 .

[31]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[32]  Peter K. Jimack,et al.  An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification , 2008 .

[33]  Dinar Camotim,et al.  On the arc-length and other quadratic control methods: Established, less known and new implementation procedures , 2008 .

[34]  Ali Demir,et al.  Trisection method by k-Lucas numbers , 2008, Appl. Math. Comput..

[35]  Ramesh Talreja,et al.  Multi-scale modeling in damage mechanics of composite materials , 2006 .

[36]  Jacky Mazars,et al.  Damage Mechanics Modeling of Nonlinear Seismic Behavior of Concrete Structures , 2005 .

[37]  Milan Jirásek,et al.  Non‐local damage model based on displacement averaging , 2005 .

[38]  Stefan Hartmann,et al.  A remark on the application of the Newton-Raphson method in non-linear finite element analysis , 2005 .

[39]  Jean-François Dubé,et al.  Non‐local damage model with evolving internal length , 2004 .

[40]  Xiao-zu Su,et al.  Arc-length technique for nonlinear finite element analysis , 2004, Journal of Zhejiang University. Science.

[41]  Roumen Iankov,et al.  Finite element simulation of profile rolling of wire , 2003 .

[42]  Stéphane Andrieux,et al.  Analysis of non-local models through energetic formulations , 2003 .

[43]  A. Palazotto,et al.  Modeling of metallic materials at high strain rates with continuum damage mechanics , 2002 .

[44]  Reza Vaziri,et al.  Application of a damage mechanics model for predicting the impact response of composite materials , 2001 .

[45]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[46]  Faming Li,et al.  Continuum damage mechanics based modeling of fiber reinforced concrete in tension , 2001 .

[47]  Petter E. Bjørstad,et al.  Domain Decomposition Solvers for Large Scale Industrial Finite Element Problems , 2000, PARA.

[48]  Y. Kim,et al.  CONTINUUM DAMAGE MECHANICS-BASED FATIGUE MODEL OF ASPHALT CONCRETE , 2000 .

[49]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[50]  Peter Zioupos Recent developments in the study of failure of solid biomaterials and bone : 'fracture' and 'pre-fracture' toughness , 1998 .

[51]  Golam Newaz,et al.  Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model , 1998 .

[52]  M. A. Crisfield,et al.  A new arc-length method for handling sharp snap-backs , 1998 .

[53]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[54]  K. Bathe Finite Element Procedures , 1995 .

[55]  Wam Marcel Brekelmans,et al.  Comparison of nonlocal approaches in continuum damage mechanics , 1995 .

[56]  Faouzi Ghrib,et al.  Nonlinear Behavior of Concrete Dams Using Damage Mechanics , 1995 .

[57]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[58]  Erasmo Carrera,et al.  A study on arc-length-type methods and their operation failures illustrated by a simple model , 1994 .

[59]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[60]  Yeong-bin Yang,et al.  Solution method for nonlinear problems with multiple critical points , 1990 .

[61]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[62]  Gilles Pijaudier-Cabot,et al.  CONTINUUM DAMAGE THEORY - APPLICATION TO CONCRETE , 1989 .

[63]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[64]  Peter Wriggers,et al.  Consistent linearization for path following methods in nonlinear FE analysis , 1986 .

[65]  Peter Wriggers,et al.  Finite deformation post‐buckling analysis involving inelasticity and contact constraints , 1986 .

[66]  Ibrahim Zeid,et al.  Fixed‐point iteration to nonlinear finite element analysis. Part I: Mathematical theory and background , 1985 .

[67]  I. Zeid Fixed‐point iteration to nonlinear finite element analysis. Part II: Formulation and implementation , 1985 .

[68]  Kris Sikorski,et al.  A bisection method for systems of nonlinear equations , 1984, TOMS.

[69]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[70]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[71]  K. C. Park,et al.  A family of solution algorithms for nonlinear structural analysis based on relaxation equations , 1982 .

[72]  Pv Rao,et al.  LOCAL INSTABILITIES IN THE NON-LINEAR ANALYSIS OF REINFORCED CONCRETE BEAMS AND SLABS , 1982 .

[73]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[74]  M. Crisfield,et al.  A faster modified newton-raphson iteration , 1979 .

[75]  Thomas J. R. Hughes,et al.  Consistent linearization in mechanics of solids and structures , 1978 .

[76]  Karl S. Pister,et al.  Identification of nonlinear elastic solids by a finite element method , 1974 .

[77]  J. A. Stricklin,et al.  Evaluation of Solution Procedures for Material and/or Geometrically Nonlinear Structural Analysis , 1973 .

[78]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[79]  O. C. Zienkiewicz,et al.  Note on the ‘Alpha’‐constant stiffness method for the analysis of non‐linear problems , 1972 .

[80]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[81]  A. Jennings Accelerating the Convergence of Matrix Iterative Processes , 1971 .

[82]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[83]  Philip Wolfe,et al.  The Secant method for simultaneous nonlinear equations , 1959, CACM.

[84]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[85]  Zdenko Tonković,et al.  A residual control staggered solution scheme for the phase-field modeling of brittle fracture , 2019, Engineering Fracture Mechanics.

[86]  Sohichi Hirose,et al.  Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements , 2018 .

[87]  Erik Kaestner,et al.  Finite Element Method Linear Static And Dynamic Finite Element Analysis , 2016 .

[88]  Sophia Blau,et al.  Introduction To Continuum Damage Mechanics , 2016 .

[89]  村上 澄男,et al.  Continuum damage mechanics : a continuum mechanics approach to the analysis of damage and fracture , 2012 .

[90]  Robert L. Taylor,et al.  FEAP - - A Finite Element Analysis Program , 2011 .

[91]  Pierre Gosselet,et al.  A Nonlinear Dual-Domain Decomposition Method: Application to Structural Problems with Damage , 2008 .

[92]  P. Dez,et al.  A Note on the Convergence of the Secant Method for Simple and Multiple Roots , 2004 .

[93]  J. Lemaître,et al.  Handbook of materials behavior models , 2001 .

[94]  Stephen J. Wright,et al.  Line Search Methods , 1999 .

[95]  P. Wriggers Nonlinear finite element analysis of solids and structures , 1998 .

[96]  F. Leckie A course on damage mechanics , 1998 .

[97]  Kenneth Reifsnider,et al.  Damage and Damage Mechanics , 1991 .

[98]  A. Cocks Inelastic deformation of porous materials , 1989 .

[99]  J. Nocedal,et al.  Global Convergence of a Class of Quasi-newton Methods on Convex Problems, Siam Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Nonlinear Programming, Edited , 1996 .

[100]  Siegfried F. Stiemer,et al.  Improved arc length orthogonality methods for nonlinear finite element analysis , 1987 .

[101]  A. Chulya,et al.  An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations , 1987 .

[102]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[103]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[104]  J. Padovan Self-adaptive incremental Newton-Raphson algorithms , 1980 .

[105]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[106]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[107]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[108]  BY ADAPTIVE , 2022 .