Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization

[1]  L. Vandenberghe,et al.  Bregman primal–dual first-order method and application to sparse semidefinite programming , 2021, Computational Optimization and Applications.

[2]  P. Parrilo,et al.  On approximations of the PSD cone by a polynomial number of smaller-sized PSD cones , 2021, Mathematical Programming.

[3]  Keqiang Li,et al.  Leading Cruise Control in Mixed Traffic Flow: System Modeling, Controllability, and String Stability , 2020, IEEE Transactions on Intelligent Transportation Systems.

[4]  Santanu S. Dey,et al.  Sparse PSD approximation of the PSD cone , 2020, Math. Program..

[5]  Gangshan Jing,et al.  Angle-Based Sensor Network Localization , 2019, IEEE Transactions on Automatic Control.

[6]  Antonis Papachristodoulou,et al.  Decomposed Structured Subsets for Semidefinite and Sum-of-Squares Optimization , 2019, ArXiv.

[7]  A. Papachristodoulou,et al.  Block Factor-Width-Two Matrices and Their Applications to Semidefinite and Sum-of-Squares Optimization , 2019, IEEE Transactions on Automatic Control.

[8]  D. Henrion,et al.  Exploiting Sparsity for Semi-Algebraic Set Volume Computation , 2019, Foundations of Computational Mathematics.

[9]  Mario Sznaier,et al.  Peak Estimation Recovery and Safety Analysis , 2021, IEEE Control Systems Letters.

[10]  Alec Jacobson,et al.  Surface multigrid via intrinsic prolongation , 2021, ACM Trans. Graph..

[11]  Jie Wang,et al.  TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization , 2021, ArXiv.

[12]  A. Wynn,et al.  Bounds on heat transport for convection driven by internal heating , 2021, Journal of Fluid Mechanics.

[13]  Bican Xia,et al.  Choosing the Variable Ordering for Cylindrical Algebraic Decomposition via Exploiting Chordal Structure , 2021, ISSAC.

[14]  Giovanni Fantuzzi,et al.  Sum-of-squares chordal decomposition of polynomial matrix inequalities , 2020, Mathematical Programming.

[15]  Victor Magron,et al.  Chordal-TSSOS: A Moment-SOS Hierarchy That Exploits Term Sparsity with Chordal Extension , 2020, SIAM J. Optim..

[16]  J. Lasserre,et al.  TSSOS: A Moment-SOS Hierarchy That Exploits Term Sparsity , 2019, SIAM Journal on Optimization.

[17]  Volkan Cevher,et al.  Scalable Semidefinite Programming , 2019, SIAM J. Math. Data Sci..

[18]  Michal Kocvara Decomposition of arrow type positive semidefinite matrices with application to topology optimization , 2021, Math. Program..

[19]  Akiko Yoshise,et al.  Polyhedral approximations of the semidefinite cone and their application , 2019, Computational Optimization and Applications.

[20]  Mark Cannon,et al.  COSMO: A Conic Operator Splitting Method for Convex Conic Problems , 2019, Journal of Optimization Theory and Applications.

[21]  Chenqi Mou,et al.  Chordal Graphs in Triangular Decomposition in Top-Down Style , 2018, J. Symb. Comput..

[22]  Didier Henrion,et al.  Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes , 2018, J. Nonlinear Sci..

[23]  Javad Lavaei,et al.  Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion , 2017, Mathematical Programming.

[24]  Alessio Lomuscio,et al.  Efficient Neural Network Verification via Layer-based Semidefinite Relaxations and Linear Cuts , 2021, IJCAI.

[25]  Antonis Papachristodoulou,et al.  Exploiting Sparsity for Neural Network Verification , 2021, L4DC.

[26]  Milan Korda,et al.  Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence , 2020, 2012.05572.

[27]  Herbert Werner,et al.  Distributed Controller Design for Systems Interconnected over Chordal Graphs , 2020, 2020 American Control Conference (ACC).

[28]  Richard Y. Zhang On the Tightness of Semidefinite Relaxations for Certifying Robustness to Adversarial Examples , 2020, NeurIPS.

[29]  Heng Yang,et al.  One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers , 2020, NeurIPS.

[30]  Juan Pablo Vielma,et al.  Towards practical generic conic optimization. , 2020 .

[31]  Paul Rolland,et al.  Lipschitz constant estimation of Neural Networks via sparse polynomial optimization , 2020, ICLR.

[32]  Victor Magron,et al.  Semialgebraic Optimization for Lipschitz Constants of ReLU Networks , 2020, NeurIPS.

[33]  J. Lasserre,et al.  Approximating regions of attraction of a sparse polynomial differential system , 2019, IFAC-PapersOnLine.

[34]  Mark Cannon,et al.  A clique graph based merging strategy for decomposable SDPs. , 2019 .

[35]  A. Papachristodoulou,et al.  On the Existence of Block-Diagonal Solutions to Lyapunov and ${\mathcal {H}_\infty }$ Riccati Inequalities , 2019, IEEE Transactions on Automatic Control.

[36]  Amir Ali Ahmadi,et al.  A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics , 2019, Annu. Rev. Control. Robotics Auton. Syst..

[37]  Giovanni Fantuzzi,et al.  Bounding Extreme Events in Nonlinear Dynamics Using Convex Optimization , 2019, SIAM J. Appl. Dyn. Syst..

[38]  Maryam Kamgarpour,et al.  Sparsity Invariance for Convex Design of Distributed Controllers , 2019, IEEE Transactions on Control of Network Systems.

[39]  Yang Zheng,et al.  Smoothing Traffic Flow via Control of Autonomous Vehicles , 2018, IEEE Internet of Things Journal.

[40]  Alden Waters,et al.  Rank Optimality for the Burer-Monteiro Factorization , 2018, SIAM J. Optim..

[41]  D. Goluskin Bounding extrema over global attractors using polynomial optimisation , 2018, Nonlinearity.

[42]  Kim-Chuan Toh,et al.  SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0) , 2017, Optim. Methods Softw..

[43]  Maryam Kamgarpour,et al.  Distributed Design for Decentralized Control Using Chordal Decomposition and ADMM , 2017, IEEE Transactions on Control of Network Systems.

[44]  Yang Zheng,et al.  Chordal decomposition in operator-splitting methods for sparse semidefinite programs , 2017, Mathematical Programming.

[45]  Cheng-Hsiung Yang,et al.  Exploiting Sparsity in SDP Relaxation for Harmonic Balance Method , 2020, IEEE Access.

[46]  Mohammad Abuabiah,et al.  Recovery of Binary Sparse Signals From Compressed Linear Measurements via Polynomial Optimization , 2019, IEEE Signal Processing Letters.

[47]  Antonis Papachristodoulou,et al.  Chordal Decomposition in Rank Minimized Semidefinite Programs with Applications to Subspace Clustering , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[48]  Maryam Kamgarpour,et al.  On Separable Quadratic Lyapunov Functions for Convex Design of Distributed Controllers , 2019, 2019 18th European Control Conference (ECC).

[49]  Cho-Jui Hsieh,et al.  A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks , 2019, NeurIPS.

[50]  Matthew M. Peet,et al.  Using SOS and Sublevel Set Volume Minimization for Estimation of Forward Reachable Sets , 2019 .

[51]  Bican Xia,et al.  A New Sparse SOS Decomposition Algorithm Based on Term Sparsity , 2018, ISSAC.

[52]  Yang Zheng,et al.  Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials , 2018, 2019 American Control Conference (ACC).

[53]  Joachim Dahl,et al.  On the robustness and scalability of semidefinite relaxation for optimal power flow problems , 2018, Optimization and Engineering.

[54]  A. Bandeira,et al.  Deterministic Guarantees for Burer‐Monteiro Factorizations of Smooth Semidefinite Programs , 2018, Communications on Pure and Applied Mathematics.

[55]  Anders Hansson,et al.  Efficient Robust Model Predictive Control using Chordality , 2018, 2019 18th European Control Conference (ECC).

[56]  Mohamadreza Ahmadi,et al.  A framework for input–output analysis of wall-bounded shear flows , 2018, Journal of Fluid Mechanics.

[57]  Yang Zheng,et al.  Fast ADMM for Sum-of-Squares Programs Using Partial Orthogonality , 2017, IEEE Transactions on Automatic Control.

[58]  Amir Ali Ahmadi,et al.  DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization , 2017, SIAM J. Appl. Algebra Geom..

[59]  Didier Henrion,et al.  Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems , 2017, SIAM J. Control. Optim..

[60]  Pushmeet Kohli,et al.  Efficient Neural Network Verification with Exactness Characterization , 2019, UAI.

[61]  Andrea Tramontani,et al.  Scoring positive semidefinite cutting planes for quadratic optimization via trained neural networks , 2019 .

[62]  Yang Zheng,et al.  Chordal sparsity in control and optimization of large-scale systems , 2019 .

[63]  Javad Lavaei,et al.  A Low-Complexity Parallelizable Numerical Algorithm for Sparse Semidefinite Programming , 2018, IEEE Transactions on Control of Network Systems.

[64]  Aditi Raghunathan,et al.  Semidefinite relaxations for certifying robustness to adversarial examples , 2018, NeurIPS.

[65]  Stephen P. Boyd,et al.  Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization , 2018, Journal of Optimization Theory and Applications.

[66]  Amir Ali Ahmadi,et al.  Robust-to-Dynamics Optimization , 2018, ArXiv.

[67]  Yang Zheng,et al.  Decomposition and Completion of Sum-of-Squares Matrices , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[68]  Maryam Kamgarpour,et al.  Scalable analysis of linear networked systems via chordal decomposition , 2018, 2018 European Control Conference (ECC).

[69]  Yang Zheng,et al.  Scalable Design of Structured Controllers Using Chordal Decomposition , 2018, IEEE Transactions on Automatic Control.

[70]  Salar Fattahi,et al.  Large-Scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion , 2018, ICML.

[71]  A. Hansson,et al.  Exploiting chordality in optimization algorithms for model predictive control , 2017, 1711.10254.

[72]  A. Wynn,et al.  Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number , 2017, Journal of Fluid Mechanics.

[73]  Yu Zhang,et al.  Conic Relaxations for Power System State Estimation With Line Measurements , 2017, IEEE Transactions on Control of Network Systems.

[74]  Jean B. Lasserre,et al.  Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity , 2016, Mathematical Programming Computation.

[75]  Anders Rantzer,et al.  Distributed Semidefinite Programming With Application to Large-Scale System Analysis , 2015, IEEE Transactions on Automatic Control.

[76]  Pablo A. Parrilo,et al.  Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone , 2014, Math. Program..

[77]  Yang Zheng,et al.  Decomposition Methods for Large-Scale Semidefinite Programs with Chordal Aggregate Sparsity and Partial Orthogonality , 2018 .

[78]  Amir Ali Ahmadi,et al.  Improving efficiency and scalability of sum of squares optimization: Recent advances and limitations , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[79]  Amir Beck,et al.  First-Order Methods in Optimization , 2017 .

[80]  Yang Zheng,et al.  Block-diagonal solutions to Lyapunov inequalities and generalisations of diagonal dominance , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[81]  Yang Zheng,et al.  Dynamical Modeling and Distributed Control of Connected and Automated Vehicles: Challenges and Opportunities , 2017, IEEE Intelligent Transportation Systems Magazine.

[82]  Frank Permenter,et al.  Solving Conic Optimization Problems via Self-Dual Embedding and Facial Reduction: A Unified Approach , 2017, SIAM J. Optim..

[83]  Wotao Yin,et al.  A New Use of Douglas-Rachford Splitting and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs , 2017, ArXiv.

[84]  Isak Nielsen,et al.  Distributed primal–dual interior-point methods for solving tree-structured coupled convex problems using message-passing , 2017, Optim. Methods Softw..

[85]  Alireza Karimi,et al.  Plug-and-Play Voltage Stabilization in Inverter-Interfaced Microgrids via a Robust Control Strategy , 2017, IEEE Transactions on Control Systems Technology.

[86]  Javad Lavaei,et al.  Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization , 2017, SIAM J. Optim..

[87]  Stephen P. Boyd,et al.  General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming , 2017, 1703.07870.

[88]  Pablo A. Parrilo,et al.  Chordal networks of polynomial ideals , 2016, SIAM J. Appl. Algebra Geom..

[89]  James Anderson,et al.  Region of Attraction Estimation Using Invariant Sets and Rational Lyapunov Functions , 2016, Autom..

[90]  Amir Ali Ahmadi,et al.  Optimization over structured subsets of positive semidefinite matrices via column generation , 2015, Discret. Optim..

[91]  Jean B. Lasserre,et al.  A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..

[92]  Xin Jiang,et al.  Minimum Rank Positive Semidefinite Matrix Completion with Chordal Sparsity Pattern , 2017 .

[93]  Robin Deits,et al.  Sum-of-squares optimization in Julia , 2017 .

[94]  Mauricio Barahona,et al.  Bounding Stationary Averages of Polynomial Diffusions via Semidefinite Programming , 2016, SIAM J. Sci. Comput..

[95]  S. Kim,et al.  Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets , 2016, J. Glob. Optim..

[96]  Mohamadreza Ahmadi,et al.  Stability Analysis for a Class of Partial Differential Equations via Semidefinite Programming , 2016, IEEE Transactions on Automatic Control.

[97]  Deqing Huang,et al.  Sum-of-squares approach to feedback control of laminar wake flows , 2016, Journal of Fluid Mechanics.

[98]  Deqing Huang,et al.  Bounds for Deterministic and Stochastic Dynamical Systems using Sum-of-Squares Optimization , 2015, SIAM J. Appl. Dyn. Syst..

[99]  Andrew V. Knyazev,et al.  Degeneracy in maximal clique decomposition for Semidefinite Programs , 2015, 2016 American Control Conference (ACC).

[100]  Pablo A. Parrilo,et al.  Exploiting Chordal Structure in Polynomial Ideals: A Gröbner Bases Approach , 2014, SIAM J. Discret. Math..

[101]  Stephen P. Boyd,et al.  Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding , 2013, Journal of Optimization Theory and Applications.

[102]  Yvonne Freeh,et al.  Interior Point Algorithms Theory And Analysis , 2016 .

[103]  Yifan Sun,et al.  Decomposition Methods for Sparse Matrix Nearness Problems , 2015, SIAM J. Matrix Anal. Appl..

[104]  Javad Lavaei,et al.  A fast distributed algorithm for decomposable semidefinite programs , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[105]  Amir Ali Ahmadi,et al.  Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming , 2015, ArXiv.

[106]  Antonis Papachristodoulou,et al.  Advances in computational Lyapunov analysis using sum-of-squares programming , 2015 .

[107]  Yinyu Ye,et al.  A homogeneous interior-point algorithm for nonsymmetric convex conic optimization , 2014, Mathematical Programming.

[108]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[109]  Michael Ulbrich,et al.  Distributed Stability Tests for Large-Scale Systems With Limited Model Information , 2015, IEEE Transactions on Control of Network Systems.

[110]  Giancarlo Ferrari-Trecate,et al.  Plug-and-Play Voltage and Frequency Control of Islanded Microgrids With Meshed Topology , 2014, IEEE Transactions on Smart Grid.

[111]  Ian A. Hiskens,et al.  Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem , 2014, IEEE Transactions on Power Systems.

[112]  Yifan Sun Decomposition methods for semidefinite optimization , 2015 .

[113]  Richard Mason A chordal sparsity approach to scalable linear and nonlinear systems analysis , 2015 .

[114]  Pablo A. Parrilo,et al.  Basis selection for SOS programs via facial reduction and polyhedral approximations , 2014, 53rd IEEE Conference on Decision and Control.

[115]  Georgios B. Giannakis,et al.  Power System Nonlinear State Estimation Using Distributed Semidefinite Programming , 2014, IEEE Journal of Selected Topics in Signal Processing.

[116]  Antonis Papachristodoulou,et al.  Chordal sparsity, decomposing SDPs and the Lyapunov equation , 2014, 2014 American Control Conference.

[117]  Anders Rantzer,et al.  Robust Stability Analysis of Sparsely Interconnected Uncertain Systems , 2013, IEEE Transactions on Automatic Control.

[118]  Martin S. Andersen,et al.  Reduced-Complexity Semidefinite Relaxations of Optimal Power Flow Problems , 2013, IEEE Transactions on Power Systems.

[119]  Yifan Sun,et al.  Decomposition in Conic Optimization with Partially Separable Structure , 2013, SIAM J. Optim..

[120]  Russ Tedrake,et al.  Convex optimization of nonlinear feedback controllers via occupation measures , 2013, Int. J. Robotics Res..

[121]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[122]  Michael Ulbrich,et al.  Distributed control design with local model information and guaranteed stability , 2014 .

[123]  Karl Johan Åström,et al.  Control: A perspective , 2014, Autom..

[124]  Nathan van de Wouw,et al.  Controller Synthesis for String Stability of Vehicle Platoons , 2014, IEEE Transactions on Intelligent Transportation Systems.

[125]  Jesse T. Holzer,et al.  Implementation of a Large-Scale Optimal Power Flow Solver Based on Semidefinite Programming , 2013, IEEE Transactions on Power Systems.

[126]  Qiao Li,et al.  Distributed algorithm for SDP state estimation , 2013, 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT).

[127]  Georgios B. Giannakis,et al.  Distributed Optimal Power Flow for Smart Microgrids , 2012, IEEE Transactions on Smart Grid.

[128]  Colin Neil Jones,et al.  Inner Approximations of the Region of Attraction for Polynomial Dynamical Systems , 2012, NOLCOS.

[129]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[130]  Martin S. Andersen,et al.  Logarithmic barriers for sparse matrix cones , 2012, Optim. Methods Softw..

[131]  Thorsten Theobald,et al.  Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization , 2011, Math. Oper. Res..

[132]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[133]  Pablo A. Parrilo,et al.  Chapter 3: Polynomial Optimization, Sums of Squares, and Applications , 2012 .

[134]  Yurii Nesterov,et al.  Towards non-symmetric conic optimization , 2012, Optim. Methods Softw..

[135]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[136]  Antonis Papachristodoulou,et al.  A Decomposition Technique for Nonlinear Dynamical System Analysis , 2012, IEEE Transactions on Automatic Control.

[137]  R. Jabr Exploiting Sparsity in SDP Relaxations of the OPF Problem , 2012, IEEE Transactions on Power Systems.

[138]  Antonis Papachristodoulou,et al.  A Converse Sum of Squares Lyapunov Result With a Degree Bound , 2012, IEEE Transactions on Automatic Control.

[139]  David Tse,et al.  Distributed algorithms for optimal power flow problem , 2011, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[140]  Didier Henrion,et al.  Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions , 2011, IEEE Transactions on Automatic Control.

[141]  Makoto Yamashita,et al.  Latest Developments in the SDPA Family for Solving Large-Scale SDPs , 2012 .

[142]  Masakazu Kojima,et al.  Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion , 2011, Math. Program..

[143]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[144]  Martin S. Andersen Chordal Sparsity in Interior-Point Methods for Conic Optimization , 2011 .

[145]  G. Chesi Domain of Attraction: Analysis and Control via SOS Programming , 2011 .

[146]  Martin S. Andersen,et al.  Linear matrix inequalities with chordal sparsity patterns and applications to robust quadratic optimization , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[147]  Naonori Kakimura,et al.  A direct proof for the matrix decomposition of chordal-structured positive semidefinite matrices , 2010 .

[148]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[149]  Masakazu Muramatsu,et al.  A facial reduction algorithm for finding sparse SOS representations , 2010, Oper. Res. Lett..

[150]  Joachim Dahl,et al.  Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones , 2010, Math. Program. Comput..

[151]  Didier Henrion,et al.  Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations , 2010, 1003.4608.

[152]  Etienne de Klerk,et al.  Exploiting special structure in semidefinite programming: A survey of theory and applications , 2010, Eur. J. Oper. Res..

[153]  Martin S. Andersen,et al.  Support vector machine training using matrix completion techniques , 2010 .

[154]  M. Mevissen Sparse semidefinite programming relaxations for large scale polynomial optimization and their applications to differential equations , 2010 .

[155]  Ufuk Topcu,et al.  Robust Region-of-Attraction Estimation , 2010, IEEE Transactions on Automatic Control.

[156]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[157]  Federico Poloni Of Note , 2009 .

[158]  Johan Löfberg,et al.  Dualize it: software for automatic primal and dual conversions of conic programs , 2009, Optim. Methods Softw..

[159]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[160]  Masakazu Kojima,et al.  Exploiting Sparsity in SDP Relaxation for Sensor Network Localization , 2009, SIAM J. Optim..

[161]  Nobuki Takayama,et al.  Solutions of polynomial systems derived from the steady cavity flow problem , 2008, ISSAC '09.

[162]  Konrad Schmuedgen Noncommutative Real Algebraic Geometry Some Basic Concepts and First Ideas , 2009 .

[163]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[164]  Jiawang Nie,et al.  Sum of squares method for sensor network localization , 2006, Comput. Optim. Appl..

[165]  Yoshio Okamoto,et al.  B-453 User's Manual for SparseCoLO: Conversion Methods for SPARSE COnic-form Linear Optimization Problems , 2009 .

[166]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[167]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[168]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[169]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[170]  J. Demmel,et al.  Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials , 2006, SIAM J. Optim..

[171]  Pablo A. Parrilo,et al.  Explicit SOS decompositions of univariate polynomial matrices and the Kalman-Yakubovich-Popov lemma , 2007, 2007 46th IEEE Conference on Decision and Control.

[172]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[173]  Shazlina Mohamad Shuib STATE ESTIMATION OF POWER SYSTEMS , 2007 .

[174]  Renato D. C. Monteiro,et al.  Large-scale semidefinite programming via a saddle point Mirror-Prox algorithm , 2007, Math. Program..

[175]  M. Kojima,et al.  Solving partial differential equations via sparse SDP relaxations , 2007 .

[176]  Antonis Papachristodoulou,et al.  Positive Forms and Stability of Linear Time-Delay Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[177]  David Grimm,et al.  A note on the representation of positive polynomials with structured sparsity , 2006, math/0611498.

[178]  Akira Tanaka,et al.  The worst-case time complexity for generating all maximal cliques and computational experiments , 2006, Theor. Comput. Sci..

[179]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[180]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[181]  Samuel Burer,et al.  Computational enhancements in low-rank semidefinite programming , 2006, Optim. Methods Softw..

[182]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[183]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[184]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[185]  Rajesh Rajamani,et al.  Vehicle dynamics and control , 2005 .

[186]  Ojas D. Parekh,et al.  On Factor Width and Symmetric H-matrices , 2005 .

[187]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .

[188]  A. Papachristodoulou,et al.  A tutorial on sum of squares techniques for systems analysis , 2005, Proceedings of the 2005, American Control Conference, 2005..

[189]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[190]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[191]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[192]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[193]  Barry W. Peyton,et al.  Maximum Cardinality Search for Computing Minimal Triangulations of Graphs , 2004, Algorithmica.

[194]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[195]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[196]  M. Kojima,et al.  SDPA-C (SemiDefinite Programming Algorithm - Completion method) User's Manual — Version 6.2.0 , 2004 .

[197]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on a Graph , 2004, SIAM Rev..

[198]  Donald Goldfarb,et al.  Robust convex quadratically constrained programs , 2003, Math. Program..

[199]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[200]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[201]  Katsuki Fujisawa,et al.  Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..

[202]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[203]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[204]  M. Kojima Sums of Squares Relaxations of Polynomial Semidefinite Programs , 2003 .

[205]  Samuel Burer,et al.  Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices , 2003, SIAM J. Optim..

[206]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[207]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[208]  Pinar Heggernes,et al.  Maximum Cardinality Search for Computing Minimal Triangulations , 2002, WG.

[209]  Yin Zhang,et al.  Digital Object Identifier (DOI) 10.1007/s101070100279 , 2000 .

[210]  Stephen P. Boyd,et al.  Future directions in control in an information-rich world , 2003 .

[211]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[212]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[213]  Mario Innocenti,et al.  Autonomous formation flight , 2000 .

[214]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[215]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[216]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .

[217]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[218]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[219]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[220]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[221]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[222]  Brian Borchers,et al.  SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .

[223]  Franz Rendl,et al.  Semidefinite Programming and Graph Equipartition , 1998 .

[224]  Charles R. Johnson,et al.  The Real Positive Definite Completion Problem: Cycle Completability , 1996 .

[225]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[226]  B. Reznick Uniform denominators in Hilbert's seventeenth problem , 1995 .

[227]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[228]  Alexander I. Barvinok,et al.  Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..

[229]  Pedro Luis Dias Peres,et al.  Decentralized control through parameter space optimization , 1994, Autom..

[230]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[231]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[232]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[233]  J. Dancis Positive semidefinite completions of partial Hermitian matrices , 1992 .

[234]  D. Carlson,et al.  Block diagonal semistability factors and Lyapunov semistability of block triangular matrices , 1992 .

[235]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[236]  L. Rodman,et al.  Positive semidefinite matrices with a given sparsity pattern , 1988 .

[237]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[238]  Tien-Yien Li Solving polynomial systems , 1987 .

[239]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[240]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[241]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[242]  Andreas Griewank,et al.  On the existence of convex decompositions of partially separable functions , 1984, Math. Program..

[243]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[244]  B. Reznick Extremal PSD forms with few terms , 1978 .

[245]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[246]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[247]  D. Rose Triangulated graphs and the elimination process , 1970 .

[248]  D. J. Newman,et al.  Arithmetic, Geometric Inequality , 1960 .

[249]  D. Hilbert,et al.  Ueber die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[250]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .