Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems

A fuzzy logic controller equipped with a training algorithm is developed such that the H∞ tracking performance should be satisfied for a model-free nonlinear multiple-input multiple-output (MIMO) system, with external disturbances. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions and the tracking error, because of the matching error and external disturbance is attenuated to arbitrary desired level by using H∞ tracking design technique. In this paper, a new direct adaptive interval type-2 fuzzy controller is developed to handle the training data corrupted by noise or rule uncertainties for nonlinear MIMO systems involving external disturbances. Therefore, linguistic fuzzy control rules can be directly incorporated into the controller and combine the H∞ attenuation technique. Simulation results show that the interval type-2 fuzzy logic system can handle unpredicted internal disturbance, data uncertainties, very well, but the adaptive type-1 fuzzy controller must spend more control effort in order to deal with noisy training data. Furthermore, the adaptive interval type-2 fuzzy controller can perform successful control and guarantee the global stability of the resulting closed-loop system and the tracking performance can be achieved.

[1]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[2]  Yih-Guang Leu,et al.  Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems , 1999, IEEE Trans. Robotics Autom..

[3]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[4]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[5]  Tsung-Chih Lin,et al.  Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems , 2002, IEEE Trans. Fuzzy Syst..

[6]  Chen Bin,et al.  Fuzzy adaptive output feedback control for MIMO nonlinear systems , 2005, Fuzzy Sets Syst..

[7]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[8]  Zengqi Sun,et al.  Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[9]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[10]  Li-Xin Wang,et al.  Stable adaptive fuzzy control of nonlinear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[11]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[12]  Kheireddine Chafaa,et al.  Indirect adaptive interval type-2 fuzzy control for nonlinear systems , 2007, Int. J. Model. Identif. Control..

[13]  Tong Shaocheng,et al.  Fuzzy adaptive output tracking control of nonlinear systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[14]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[15]  A. Golea,et al.  Fuzzy adaptive control of multivariable nonlinear systems , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[16]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks - Part 2: Clustering , 1993, IEEE Trans. Fuzzy Syst..

[17]  Tsung-Chih Lin,et al.  Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[19]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[20]  Tsu-Tian Lee,et al.  Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[21]  Alexander S. Poznyak,et al.  Nonlinear adaptive trajectory tracking using dynamic neural networks , 1999, IEEE Trans. Neural Networks.

[22]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[23]  김현기,et al.  입자 군집 최적화 알고리즘에 의한 Interval Type-2 Fuzzy Logic System의 설계 및 응용 , 2009 .

[24]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[25]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[26]  Yih-Guang Leu,et al.  Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..