A Simple Alternative Method to Estimate the Collapse Pressure of Flexible Pipes
暂无分享,去创建一个
Offshore oil and gas production worldwide constantly moves to deeper water with increasing flexible pipe operational severity. Failure mechanisms, i.e., sequences of events which may lead to failure, are nowadays more likely to happen. Therefore, it is important to develop reliable numerical tools that can be used in the design stages or during service-life to assess the structural integrity of pipes under specific operational conditions. This work presents a methodology to develop simple finite element models capable to reproduce the behavior of structural layers of flexible pipes under hydrostatic pressure up to the onset of collapse. The models use beam elements and include contact between layers, nonlinear kinematics and material behavior. Different configurations were analyzed: carcass-only, and carcass plus pressure armor with dry and wet annular. The dependability of the numerical models is assessed in light of experimental tests on flexible pipes with 4 and 8 inch nominal internal diameters. Relevant geometric parameters and material properties of each specimen were measured and subsequently used in the models to reproduce the physical experiments. The metallic inner carcass and pressure armor layer manufacturing processes cause a high degree of stress-induced material anisotropy. Due to the inherent difficulty to determine the non-homogeneous elastic-plastic material behavior of the wires’ cross-sections, a novel alternative method was used to estimate their average stress-strain curves up to moderate strains (2%). Good correlation was obtained between experimental and numerical results. The applied methodology proved to be simple and yet efficient and reliable for the estimation of the collapse pressure of flexible pipes.Copyright © 2010 by ASME