Nanoheteroepitaxial lateral overgrowth of GaN on nanoporous Si(111)

Nanoheteroepitaxial (NHE) lateral overgrowth of GaN on nanoporous Si(111) substrates has been demonstrated. Nanopore arrays in Si(111) surfaces were fabricated using anodized aluminum oxide templates as etch masks, resulting in an average pore diameter and depth of about 60 and 160–180nm, respectively. NHE growth of AlN and GaN was found to result in a significant reduction in the threading dislocation density (<108cm−2) compared to that on flat Si(111). Most dislocations that originate at the Si interface bent to lie in the GaN (0001) basal plane during lateral growth over the pore openings. E2 phonon blueshifts in the Raman spectra indicate a significant relaxation of the tensile stress in the coalesced GaN films, due to three-dimensional stress relaxation mechanisms on porous substrates. Our results show that a single step lateral overgrowth of GaN on nanopatterned Si(111) substrates without a dielectric mask is a simple way to improve the crystalline quality of GaN layers for microelectronic applications.

[1]  P. Larsen,et al.  Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates , 2005 .

[2]  Vibhu Jindal,et al.  Development of strain reduced GaN on Si "111… by substrate engineering , 2005 .

[3]  Michael N. Fairchild,et al.  Nanoheteroepitaxial growth of GaN on Si nanopillar arrays , 2005 .

[4]  Soo Jin Chua,et al.  Fabrication and properties of nanoporous GaN films , 2004 .

[5]  R. Beresford,et al.  Nanoheteroepitaxy of GaN on a nanopore array Si surface , 2003 .

[6]  C. D. Lee,et al.  Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity , 2003 .

[7]  Fernando Ponce,et al.  Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si , 2002 .

[8]  Shuang Zhang,et al.  Nanoheteroepitaxy for the integration of highly mismatched semiconductor materials , 2002 .

[9]  Armin Dadgar,et al.  The origin of stress reduction by low-temperature AlN interlayers , 2002 .

[10]  Peng Chen,et al.  Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si(111) , 2002 .

[11]  P. Vennégués,et al.  Epitaxial Lateral Overgrowth of GaN , 2001 .

[12]  T. Seong,et al.  Growth of high-quality GaN on Si(111) substrate by ultrahigh vacuum chemical vapor deposition , 2001 .

[13]  P. Vennégués,et al.  Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods , 2000 .

[14]  David Zubia,et al.  Nanoheteroepitaxial growth of GaN on Si by organometallic vapor phase epitaxy , 2000 .

[15]  K. Hiramatsu,et al.  Selective Area Growth of GaN on Si Substrate Using SiO 2 Mask by Metalorganic Vapor Phase Epitaxy , 1998 .

[16]  Pierre Gibart,et al.  Epitaxial lateral overgrowth of GaN on Si (111) , 2003 .

[17]  Jacques I. Pankove,et al.  A GaN/4H-SiC heterojunction bipolar transistor with operation up to 300°C , 1999 .

[18]  James S. Speck,et al.  Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical vapor deposition using an AlN buffer layer , 1999 .