Maneuver detection using the radar range rate measurement

Tracking maneuvering targets with radar is complicated because radar cannot directly measure target accelerations. We use the range rate measurement to calculate a new statistic that is a surrogate measurement of target acceleration under a constant rate turn model. Its distribution is found via simulation. A threshold test of the statistic turns out to be a reliable detector of a maneuver. A tracker that uses a threshold test of the new statistic of accelerations to detect maneuvers and set. the process noise in a Kalman filter tracker is developed and compared with other, common maneuvering track filters. The new method compares favorably to a two mode interacting multiple model (IMM) and a tracker that switches process noise levels based on the position measurement innovations.

[1]  Bing Chen,et al.  Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed-lag smoothing , 2001, Autom..

[2]  Robin J. Evans,et al.  Probabilistic data association for systems with multiple simultaneous measurements , 1996, Autom..

[3]  Robin J. Evans,et al.  A multipath data association tracker for over-the-horizon radar , 1998 .

[4]  Y. Bar-Shalom Tracking and data association , 1988 .

[5]  A. Graziano,et al.  IMMJPDA versus MHT and Kalman filter with NN correlation: performance comparison , 1997 .

[6]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[7]  Y. Bar-Shalom,et al.  Tracking of splitting targets in clutter using an interacting multiple model joint probabilistic data association filter , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[8]  Henk A. P. Blom,et al.  Combining IMM and JPDA for tracking multiple maneuvering targets in clutter , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[9]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[10]  G. W. Pulford,et al.  Simultaneous registration and tracking for multiple radars with cluttered measurements , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.

[11]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[12]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[13]  Henk A. P. Blom,et al.  Probabilistic data association avoiding track coalescence , 2000, IEEE Trans. Autom. Control..

[14]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[15]  Yoshio Kosuge,et al.  Target tracking using range rate measurements under dense environments , 2002 .

[16]  Bruce Engelberg,et al.  Combined Kalman filter (CKF) and JVC algorithms for AEW target tracking applications , 1997, Optics & Photonics.

[17]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[18]  D. Bizup A Centripetal Acceleration Statistic for Tracking Maneuvering Targets with Radar , 2002 .

[19]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[20]  Yaakov Bar-Shalom Negative correlation and optimal tracking with Doppler measurements , 2001 .

[21]  Y. Bar-Shalom,et al.  Multisensor tracking of a maneuvering target in clutter , 1989 .

[22]  Bruce Engelberg,et al.  Maneuver tracking algorithms for AEW target tracking applications , 1999, Optics & Photonics.

[23]  M. Tahk,et al.  Generalized input-estimation technique for tracking maneuvering targets , 1999 .