Infinitesimal Theories of Uncertainty for Plausible Reasoning

An important feature of human reasoning is its ability to draw conclusions from available information (which is often incomplete). The conclusions drawn this way are just plausible and can be revised in the light of new information. This kind of reasoning is called plausible or default reasoning (e.g. [Reiter, 1980]). In this chapter, we are interested in how uncertainty models such as probability theory, possibility theory [Zadeh, 1978; Dubois and Prade, 1988] or evidence theory [Shafer, 1976; Smets, 1988] can be used to deal with default information. Default information considered here are rules of the form ‘generally, if α then β’, where α and β are propositional formulas; these rules are then subject to exceptions. A typical example of a default information is ‘generally, birds fly’. Of course, a default reasoning system should be nonmonotonic (the addition of formulas to the knowledge base can make the set of plausible conclusions decrease). For instance, given the default rule ‘generally, birds fly’, and knowing that Tweety is a bird, then we intend to conclude that it flies. If we later learn that it is a penguin, however, we should withdraw this conclusion. Among the various approaches used to tackle this problem, we focus on the use of infinitesimal uncertainty values (where the uncertainty model is either probability or evidence theory), where values committed to each proposition of the language are either close to 1 or close 0, to do plausible reasoning. This chapter is neither intended to be an overview of non-standard analysis (See [Robinson, 1966; Weydert, 1995] and [Lehmann and Magidor, 1992, Appendix B] for an exposition on non-standard analysis) nor an overview of default reasoning systems. For an overview of works on default reasoning systems see [Lea Sombe, 1988; Brewka et al., 1991]. However the approaches presented in this chapter do not appear in these two overviews.

[1]  N. Rescher,et al.  On inference from inconsistent premisses , 1970 .

[2]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[3]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[4]  E. Hisdal Conditional possibilities independence and noninteraction , 1978 .

[5]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[6]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[7]  R. Yager An introduction to applications of possibility theory (+ commentaries by L.A. Zadeh, W. Bandler, T. Saaty, A. Kandel, D. Dubois & H. Prade, R.M. Tong and M. Kochen) , 1982 .

[8]  Dov M. Gabbay,et al.  Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems , 1989, Logics and Models of Concurrent Systems.

[9]  James A. Reggia,et al.  A formal model of diagnostic inference. I. Problem formulation and decomposition , 1985, Inf. Sci..

[10]  Krzysztof R. Apt,et al.  Logics and Models of Concurrent Systems , 1989, NATO ASI Series.

[11]  Yun Peng,et al.  A formal model of diagnostic inference, II. Algorithmic solution and application , 1985, Inf. Sci..

[12]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[13]  Y. Shoham Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence , 1987 .

[14]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[15]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[16]  Wolfgang Spohn,et al.  A general non-probabilistic theory of inductive reasoning , 2013, UAI.

[17]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[18]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[19]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[20]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[21]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[22]  Kathryn B. Laskey,et al.  Assumptions, Beliefs and Probabilities , 1989, Artif. Intell..

[23]  Johan de Kleer,et al.  Using Crude Probability Estimates to Guide Diagnosis , 1990, Artif. Intell..

[24]  Peter Gärdenfors,et al.  Belief Revision and Nonmonotonic Logic: Two Sides of the Same Coin? (Abstract) , 1990, JELIA.

[25]  Eric Neufeld,et al.  A probabilistic commonsense reasoner , 1990, Int. J. Intell. Syst..

[26]  Judea Pearl,et al.  System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .

[27]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[28]  Didier Dubois,et al.  The logical view of conditioning and its application to possibility and evidence theories , 1990, Int. J. Approx. Reason..

[29]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[30]  Jürgen Dix,et al.  A Tutorial on Nonmonotonic Reasoning , 1991, Nonmonotonic and Inductive Logic.

[31]  Michael P. Wellman,et al.  Qualitative Intercausal Relations, or Explaining "Explaining Away" , 1991, KR.

[32]  Gadi Pinkas,et al.  Propositional Non-Monotonic Reasoning and Inconsistency in Symmetric Neural Networks , 1991, IJCAI.

[33]  Jérôme Lang Logique possibiliste : aspects formels, deduction automatique, et applications , 1991 .

[34]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[35]  Hector Geffner,et al.  Default reasoning - causal and conditional theories , 1992 .

[36]  V. S. Subrahmanian,et al.  COMBINING KNOWLEDGE BASES CONSISTING OF FIRST‐ORDER THEORIES , 1992, Comput. Intell..

[37]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[38]  Didier Dubois,et al.  Inconsistency in possibilistic knowledge bases: to live with it or not live with it , 1992 .

[39]  M. Goldszmidt Qualitative probabilities: a normative framework for commonsense reasoning , 1992 .

[40]  Marialuisa N. McAllister Possibility Theory: An Approach to Computerized Processing of Uncertainty (Didier Dubois and Henri Prade with the collaboration o f Henri Farreny, Roger Martin-Clouaire, and Claudette Testemale; E. F. Handing, trans.) , 1992, SIAM Rev..

[41]  Moisés Goldszmidt,et al.  On the Consistency of Defeasible Databases , 1991, Artif. Intell..

[42]  Moisés Goldszmidt,et al.  Rank-based Systems: A Simple Approach to Belief Revision, Belief Update, and Reasoning about Evidence and Actions , 1992, KR.

[43]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[44]  Moisés Goldszmidt,et al.  A Maximum Entropy Approach to Nonmonotonic Reasoning , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[46]  David Poole,et al.  Average-Case Analysis of a Search Algorithm for Estimating Prior and Posterior Probabilities in Bayesian Networks with Extreme Probabilities , 1993, IJCAI.

[47]  H. Prade,et al.  Possibilistic logic , 1994 .

[48]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[49]  Gregory M. Provan,et al.  An Experimental Comparison of Numerical and Qualitative Probabilistic Reasoning , 1994, UAI.

[50]  Thomas Schiex,et al.  Penalty Logic and its Link with Dempster-Shafer Theory , 1994, UAI.

[51]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[52]  Jérôme Lang,et al.  Syntax-based Default Reasoning as Probabilistic Model-based Diagnosis , 1994, UAI.

[53]  Didier Dubois,et al.  Updating, Transition Constraints and Possibilistic Markov Chains , 1994, IPMU.

[54]  Didier Dubois,et al.  Expressing Independence in a Possibilistic Framework and its Application to Default Reasoning , 1994, ECAI.

[55]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[56]  Moisés Goldszmidt,et al.  On the Relation between Kappa Calculus and Probabilistic Reasoning , 1994, UAI.

[57]  Salem Benferhat Raisonnement non-monotone et traitement de l'inconsistance en logique possibiliste , 1994 .

[58]  Emil Weydert,et al.  Defaults and Infinitesimals Defeasible Inference by Nonarchimedean Entropy-Maximization , 1995, UAI.

[59]  Alessandro Saffiotti,et al.  Belief functions and default reasoning , 1995, Artif. Intell..

[60]  Ramón Pino Pérez,et al.  Rational transitivity and its models , 1996, Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96).

[61]  Didier Dubois,et al.  Conditional objects, possibility theory and default rules , 1996 .

[62]  Jérôme Lang,et al.  Conditional Desires and Utilities: an Alternative Logical Approach to Qualitative Decision Theory , 1996, ECAI.

[63]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[64]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .