Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells

[1]  M. Mezei,et al.  An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy , 2021, The Journal of experimental medicine.

[2]  D. Esposito,et al.  Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination , 2021, Nature Communications.

[3]  E. Kenigsberg,et al.  Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells , 2021, Nature.

[4]  J. Condeelis,et al.  The role of the tumor microenvironment in tumor cell intravasation and dissemination. , 2020, European journal of cell biology.

[5]  J. Condeelis,et al.  Intravital Imaging Techniques for Biomedical and Clinical Research , 2019, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[6]  David R. Jones,et al.  Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis , 2019, Nature Cell Biology.

[7]  Xin-hua Liang,et al.  NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway , 2019, BMC Cancer.

[8]  C. Curtis,et al.  Quantitative evidence for early metastatic seeding in colorectal cancer , 2019, Nature Genetics.

[9]  I. Vergote,et al.  Myeloid Derived Suppressor Cells: Key Drivers of Immunosuppression in Ovarian Cancer , 2019, Front. Immunol..

[10]  B. Fingleton,et al.  The importance of developing therapies targeting the biological spectrum of metastatic disease , 2019, Clinical & Experimental Metastasis.

[11]  Shanshan Liu,et al.  The genetic evolution of metastatic uveal melanoma , 2019, Nature Genetics.

[12]  C. Kenific,et al.  Exosome-Mediated Metastasis: Communication from a Distance. , 2019, Developmental cell.

[13]  M. Wicha,et al.  Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model , 2019, Nature Communications.

[14]  S. Harlepp,et al.  Metastatic Tumor Cells Exploit Their Adhesion Repertoire to Counteract Shear Forces during Intravascular Arrest. , 2018, Cell reports.

[15]  Linn Rydahl,et al.  Communication at a Distance , 2015, Networking the Bloc.

[16]  P. Lønning,et al.  NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients , 2018, Breast Cancer Research.

[17]  Shaowei Li,et al.  Fluid shear stress and tumor metastasis. , 2018, American journal of cancer research.

[18]  J. Pollard,et al.  A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation , 2018, Cell reports.

[19]  N. Paul,et al.  Hemodynamic forces tune the arrest, adhesion and extravasation of circulating tumor cells , 2017, bioRxiv.

[20]  J. Condeelis,et al.  A permanent window for the murine lung enables high-resolution imaging of cancer metastasis , 2017, Nature Methods.

[21]  M. Merad,et al.  Macrophages orchestrate breast cancer early dissemination and metastasis , 2018, Nature Communications.

[22]  J. Condeelis,et al.  A Protocol for the Implantation of a Permanent Window for High-Resolution Imaging of the Murine Lung , 2017 .

[23]  R. Gray,et al.  A metastasis biomarker (MetaSite Breast™ Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer , 2017, npj Breast Cancer.

[24]  J. Condeelis,et al.  Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. , 2017, Trends in cell biology.

[25]  R. Weinberg,et al.  Emerging Biological Principles of Metastasis , 2017, Cell.

[26]  Michael R. Padgen,et al.  Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments , 2017, Nature Cell Biology.

[27]  Rainer Spang,et al.  Early dissemination seeds metastasis in breast cancer , 2016, Nature.

[28]  J. Condeelis,et al.  Mechanism of early dissemination and metastasis in Her2+ mammary cancer , 2016, Nature.

[29]  J. Condeelis,et al.  Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation , 2016, Scientific Reports.

[30]  J. Condeelis,et al.  MenaINV dysregulates cortactin phosphorylation to promote invadopodium maturation , 2016, Scientific Reports.

[31]  J. Condeelis,et al.  Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment. , 2016, Journal of visualized experiments : JoVE.

[32]  J. Condeelis,et al.  Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe , 2016, Intravital.

[33]  Mehmet Toner,et al.  Clusters of circulating tumor cells traverse capillary-sized vessels , 2016, Proceedings of the National Academy of Sciences.

[34]  R. Weinberg,et al.  Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. , 2016, Cancer discovery.

[35]  Gary K. Schwartz,et al.  Tumour exosome integrins determine organotropic metastasis , 2015, Nature.

[36]  Panagiota Arampatzi,et al.  Common stemness regulators of embryonic and cancer stem cells. , 2015, World journal of stem cells.

[37]  Yarong Wang,et al.  Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. , 2015, Cancer discovery.

[38]  David Entenberg,et al.  In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility , 2015, Intravital.

[39]  Joan G. Jones,et al.  TMEM: a novel breast cancer dissemination marker for the assessment of metastatic risk. , 2015, Biomarkers in medicine.

[40]  T. Rohan,et al.  Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration , 2014, Science Signaling.

[41]  T. Rohan,et al.  Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. , 2014, Journal of the National Cancer Institute.

[42]  Jeffrey T. Chang,et al.  A signature of epithelial-mesenchymal plasticity and stromal activation in primary tumor modulates late recurrence in breast cancer independent of disease subtype , 2014, Breast Cancer Research.

[43]  R. Robison,et al.  Investigating the role of macrophages in tumor formation using a MaFIA mouse model. , 2013, Oncology reports.

[44]  M. Clarke,et al.  Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors , 2013, Intravital.

[45]  J. Debnath,et al.  Regulation of tumor cell dormancy by tissue microenvironments and autophagy. , 2013, Advances in experimental medicine and biology.

[46]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[47]  Alvaro Rada-Iglesias,et al.  Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. , 2012, Cell stem cell.

[48]  Yarong Wang,et al.  Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients , 2012, Breast Cancer Research.

[49]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[50]  Ryung S. Kim,et al.  Dormancy Signatures and Metastasis in Estrogen Receptor Positive and Negative Breast Cancer , 2012, PloS one.

[51]  J. Condeelis,et al.  N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors , 2012, Journal of Cell Science.

[52]  Jeffrey Wyckoff,et al.  Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging , 2011, Nature Protocols.

[53]  D. Lauffenburger,et al.  Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer , 2011, Journal of Cell Science.

[54]  Jinghang Zhang,et al.  CCL2 recruits inflammatory monocytes to facilitate breast tumor metastasis , 2011, Nature.

[55]  T. Albert,et al.  Hypoxia activates the notch signaling pathway in cells of the intervertebral disc: implications in degenerative disc disease. , 2011, Arthritis and rheumatism.

[56]  J. Condeelis,et al.  Mena invasive (MenaINV) and Mena11a isoforms play distinct roles in breast cancer cell cohesion and association with TMEM , 2011, Clinical & Experimental Metastasis.

[57]  J. Condeelis,et al.  Metastasis: tumor cells becoming MENAcing. , 2010, Trends in cell biology.

[58]  Yarong Wang,et al.  Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors , 2010, Breast Cancer Research.

[59]  Jochen Herms,et al.  Real-time imaging reveals the single steps of brain metastasis formation , 2010, Nature Medicine.

[60]  Hubing Shi,et al.  Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. , 2009, Cancer research.

[61]  Ruth J. Muschel,et al.  A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth , 2009, PloS one.

[62]  John S. Condeelis,et al.  Tumor Microenvironment of Metastasis in Human Breast Carcinoma: A Potential Prognostic Marker Linked to Hematogenous Dissemination , 2009, Clinical Cancer Research.

[63]  D. Lauffenburger,et al.  A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. , 2008, Developmental cell.

[64]  U. Lendahl,et al.  Notch signaling mediates hypoxia-induced tumor cell migration and invasion , 2008, Proceedings of the National Academy of Sciences.

[65]  F. Modugno,et al.  Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo , 2008, Clinical & Experimental Metastasis.

[66]  Yarong Wang,et al.  Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. , 2007, Cancer research.

[67]  A. Puisieux,et al.  Metastasis: a question of life or death , 2006, Nature Reviews Cancer.

[68]  I. Macdonald,et al.  Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth , 1994, Clinical & Experimental Metastasis.

[69]  L. Weiss Biomechanical destruction of cancer cells in skeletal muscle: a rate-regulator for hematogenous metastasis , 1989, Clinical & Experimental Metastasis.

[70]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[71]  E. Bottinger,et al.  Gene expression analysis on small numbers of invasive cells collected by chemotaxis from primary mammary tumors of the mouse , 2003, BMC biotechnology.

[72]  N. Van Rooijen,et al.  "In vivo" depletion of macrophages by liposome-mediated "suicide". , 2003, Methods in enzymology.

[73]  G. Naumov,et al.  Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. , 2002, Cancer research.

[74]  D. Skelton,et al.  The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice , 2001, Gene Therapy.

[75]  K. L. Woodward,et al.  A question of life or death. , 2001, Newsweek.

[76]  Christopher W. Wong,et al.  Apoptosis: an early event in metastatic inefficiency. , 2001, Cancer research.

[77]  James E Bear,et al.  Negative Regulation of Fibroblast Motility by Ena/VASP Proteins , 2000, Cell.

[78]  I. Macdonald,et al.  Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. , 2000, Cancer research.

[79]  A. Al-Mehdi,et al.  Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis , 2000, Nature Medicine.

[80]  G. Naumov,et al.  Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. , 1999, Journal of cell science.

[81]  K. Luzzi,et al.  Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. , 1998, The American journal of pathology.

[82]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[83]  Rakesh K. Jain,et al.  Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation , 1997, Nature Medicine.

[84]  R. Khokha,et al.  Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. , 1995, Cancer research.

[85]  N. Van Rooijen,et al.  Liposome mediated depletion of macrophages: an approach for fundamental studies. , 1994, Journal of drug targeting.

[86]  I. Macdonald,et al.  Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. , 1992, Microvascular research.

[87]  R. Cardiff,et al.  Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease , 1992, Molecular and cellular biology.

[88]  U. Bagge,et al.  Lethal deformation of cancer cells in the microcirculation: A potential rate regulator of hematogenous metastasis , 1992, International journal of cancer.

[89]  L. Liotta,et al.  Tumor invasion and metastasis: an imbalance of positive and negative regulation. , 1991, Cancer research.

[90]  L. Liotta,et al.  Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation , 1991, Cell.

[91]  P. Hokland,et al.  Fate of tumor cells injected into left ventricle of heart in BALB/c mice: role of natural killer cells. , 1988, Journal of the National Cancer Institute.

[92]  E. Mayhew,et al.  Quantitation of tumorigenic disseminating and arrested cancer cells. , 1984, British Journal of Cancer.

[93]  Craig W. Reynolds,et al.  In vivo role of natural killer cells: involvement of large granular lymphocytes in the clearance of tumor cells in anti-asialo GM1-treated rats. , 1983, Journal of immunology.

[94]  R. Wiltrout,et al.  Role of NK cells in the control of metastatic spread and growth of tumor cells in mice , 1982, International journal of cancer.

[95]  I. Fidler,et al.  Malignant: Role of natural killer cells in the destruction of circulating tumor emboli , 1981 .

[96]  N. Hanna Expression of metastatic potential of tumor cells in young nude mice is correlated with low levels of natural killer cell‐mediated cytotoxicity , 1980, International journal of cancer.

[97]  J. Talmadge,et al.  Role of NK cells in tumour growth and metastasis in beige mice , 1980, Nature.

[98]  C. Riccardi,et al.  In vivo natural reactivity of mice against tumor cells , 1980, International journal of cancer.

[99]  L. Liotta,et al.  In vivo monitoring of the death rate of artificial murine pulmonary micrometastases. , 1978, Cancer research.

[100]  I. Fidler,et al.  Metastasis: Quantitative Analysis of Distribution and Fate of Tumor Emboli Labeled With 125I-5-Iodo-2′ -deoxyuridine , 1970 .

[101]  W. Prensky,et al.  Death and metastatic distribution of tumor cells in mice monitored with 125I-iododeoxy-uridine. , 1969, Journal of the National Cancer Institute.

[102]  R. Baserga,et al.  A study on the establishment and growth of tumor metastases with tritiated thymidine. , 1960, Cancer research.

[103]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[104]  I. Levin,et al.  ON THE MECHANISM OF THE FORMATION OF METASTASES IN MALIGNANT TUMORS , 1911, The Journal of experimental medicine.