Formalizing Artistic Techniques and Scientific Visualization for Painted Renditions of Complex Information Spaces

This paper describes a new method for visualizing complex information spaces as painted images. Scientific visualization converts data into pictures that allow viewers to "see" trends, relationships, and patterns. We introduce a formal definition of the correspondence between traditional visualization techniques and painterly styles from the Impressionist art movement. This correspondence allows us to apply perceptual guidelines from visualization to control the presentation of information in a computer-generated painting. The result is an image that is visually engaging, but that also allows viewers to rapidly and accurately explore and analyze the underlying data values. We conclude by applying our technique to a collection of environmental and weather readings, to demonstrate its viability in a practical, real-world visualization environment.

[1]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[2]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[3]  Penny Rheingans,et al.  A tool for dynamic explorations of color mappings , 1990, I3D '90.

[4]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[5]  Alessandro Saffiotti,et al.  Anchoring Symbols to Sensor Data: Preliminary Report , 2000, AAAI/IAAI.

[6]  J. Lammens A computational model of color perception and color naming , 1995 .

[7]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[8]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[9]  David Kortenkamp,et al.  Integrating active perception with an autonomous robot architecture , 1998, AGENTS '98.

[10]  Alessandro Saffiotti,et al.  Active perceptual anchoring of robot behavior in a dynamic environment , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[12]  T. Callaghan Interference and dominance in texture segregation: Hue, geometric form, and line orientation , 1989, Perception & psychophysics.

[13]  James T. Enns,et al.  Large Datasets at a Glance: Combining Textures and Colors in Scientific Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[14]  James T. Enns,et al.  Oriented Sliver Textures: A Technique for Local Value Estimation of Multiple Scalar Fields , 2000, Graphics Interface.

[15]  A. D. Smith,et al.  Color for Philosophers , 1991 .

[16]  Alessandro Saffiotti,et al.  A Multivalued Logic Approach to Integrating Planning and Control , 1995, Artif. Intell..

[17]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[18]  Luc Steels,et al.  Synthesising the origins of language and meaning using co-evolution, self-organisation and level formation , 1998 .

[19]  Lars Karlsson,et al.  Conditional progressive planning under uncertainty , 2001, IJCAI.

[20]  Takeo Kanade,et al.  Name-It: Naming and Detecting Faces in Video by the Integration of Image and Natural Language Processing , 1997, IJCAI.

[21]  Donald Favareau The Symbolic Species: The Co-evolution of Language and the Brain , 1998 .

[22]  R. Heller,et al.  © Macmillan , 1977 .

[23]  Alessandro Saaotti Pick-Up What ? , 1994 .

[24]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning with the Region Connection Calculus , 1997, GeoInformatica.

[25]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[26]  William Knight,et al.  Using visual texture for information display , 1995, TOGS.

[27]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[28]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[29]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[30]  S. Thompson,et al.  Modern Chromatics, with Applications to Art and Industry , 1879, Nature.

[31]  Luc Steels,et al.  The synthetic modeling of language origins , 1997 .

[32]  M. Bornstein Color vision and color naming: a psychophysiological hypothesis of cultural difference. , 1973, Psychological bulletin.

[33]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[34]  D B Moody,et al.  Categorical perception of conspecific communication sounds by Japanese macaques, Macaca fuscata. , 1989, The Journal of the Acoustical Society of America.

[35]  B. Saunders,et al.  Are there nontrivial constraints on colour categorization? , 1997, Behavioral and Brain Sciences.

[36]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[37]  P. Kay Basic Color Terms: Their Universality and Evolution , 1969 .

[38]  Ian Horswill,et al.  Visual architecture and cognitive architecture , 1997, J. Exp. Theor. Artif. Intell..

[39]  Alexander Zelinsky,et al.  Grounded Symbolic Communication between Heterogeneous Cooperating Robots , 2000, Auton. Robots.

[40]  J. Piaget,et al.  The equilibration of cognitive structures : the central problem of intellectual development , 1985 .

[41]  P. Kay,et al.  The linguistic significance of the meanings of basic color terms , 1978 .

[42]  Salvatore Gaglio,et al.  An architecture for autonomous agents exploiting conceptual representations , 1998, Robotics Auton. Syst..

[43]  Ruzena Bajcsy,et al.  The Problem of Signal and Symbol Integration: A Study of Cooperative Mobile Autonomous Agent Behaviors , 1995, KI.