Analyzing Space-Time Dynamics of Theft Rates Using Exchange Mobility

A critical issue in the geography of crime is the quantitative analysis of the spatial distribution of crimes which usually changes over time. In this paper, we use the concept of exchange mobility across different time periods to determine the spatial distribution of the theft rate in the city of Wuhan, China, in 2016. To this end, we use a newly-developed spatial dynamic indicator, the Local Indicator of Mobility Association (LIMA), which can detect differences in the spatial distribution of theft rate rankings over time from a distributional dynamics perspective. Our results provide a scientific reference for the evaluation of the effects of crime prevention efforts and offer a decision-making tool to enhance the application of temporal and spatial analytical methods.

[1]  Wei Luo,et al.  Spatiotemporal crime analysis in U.S. law enforcement agencies: Current practices and unmet needs , 2013, Gov. Inf. Q..

[2]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[3]  Xuan Shi,et al.  Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure , 2013 .

[4]  Lin Liu,et al.  Spatial crime analysis and modeling , 2012, Ann. GIS.

[5]  Jay Lee,et al.  Accounting for Spatiotemporal Inhomogeneity of Urban Crime in China , 2017 .

[6]  Juan R. Cuadrado-Roura,et al.  Regional Policy, Economic Growth and Convergence , 2010 .

[7]  T Cheng,et al.  Determining the optimal spatial scan of Prospective space-time scan statistics (PSTSS) for crime hotspot prediction , 2017 .

[8]  Yongwan Chun,et al.  Analyzing Space–Time Crime Incidents Using Eigenvector Spatial Filtering: An Application to Vehicle Burglary , 2014 .

[9]  Sergio J. Rey,et al.  US Regional Income Convergence: A Spatial Econometric Perspective , 1999 .

[10]  Peter Lambert,et al.  Horizontal inequity comparisons , 2001, Soc. Choice Welf..

[11]  Martin A. Andresen,et al.  Crime seasonality and its variations across space , 2013 .

[12]  Anna Gudrun Ragnarsdottir,et al.  Investigating the Long-Run and Causal Relationship between GDP and Crime in Sweden , 2014 .

[13]  Ghassan B. Hamra,et al.  A Time Series Analysis of Associations between Daily Temperature and Crime Events in Philadelphia, Pennsylvania , 2017, Journal of Urban Health.

[14]  Patrick R. Gartin,et al.  Hot Spots of Predatory Crime: Routine Activities and the Criminology of Place , 1989 .

[15]  Sergio J. Rey,et al.  Space–Time Patterns of Rank Concordance: Local Indicators of Mobility Association with Application to Spatial Income Inequality Dynamics , 2016 .

[16]  Sergio J. Rey,et al.  Spatial Analysis of Economic Convergence , 2009 .

[17]  H. Abdi The Kendall Rank Correlation Coefficient , 2007 .

[18]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[19]  García Velasco,et al.  Regional Policy, Economic Growth and Convergence. Lessons from the Spanish Case , 2011 .

[20]  Martin A. Andresen,et al.  Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective , 2017, International journal of offender therapy and comparative criminology.

[21]  Sergio J. Rey,et al.  STARS: Space-Time Analysis of Regional Systems , 2004 .

[22]  Daniel A. Griffith,et al.  Random effects specifications in eigenvector spatial filtering: a simulation study , 2015, J. Geogr. Syst..

[23]  Rolf Aaberge,et al.  Income Inequality and Income Mobility in the Scandinavian Countries Compared to the United States , 2002 .

[24]  G. Breetzke,et al.  Examining the spatial periodicity of crime in South Africa using Fourier analysis , 2016 .

[25]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[26]  Arthur Getis,et al.  Spatial statistical analysis and geographic information systems , 1992 .

[27]  Tae-Heon Moon,et al.  Hotspot Analysis of Urban Crime Using Space-Time Scan Statistics , 2010 .

[28]  Ronald Fagin,et al.  Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.

[29]  Daniel A. Griffith,et al.  Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters , 2016, J. Geogr. Syst..

[30]  C. F. Kossack,et al.  Rank Correlation Methods , 1949 .

[31]  Martin A. Andresen,et al.  The impact of using social media data in crime rate calculations: shifting hot spots and changing spatial patterns , 2015 .

[32]  C. Genest,et al.  ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS , 2011 .

[33]  Mark V. Janikas,et al.  Regional convergence, inequality, and space , 2005 .

[34]  Sergio J. Rey,et al.  Comparative Spatial Dynamics of Regional Systems , 2010 .

[35]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[36]  Sergio J. Rey,et al.  Fast algorithms for a space-time concordance measure , 2014, Comput. Stat..

[37]  Gary S. Fields,et al.  Does income mobility equalize longer-term incomes? New measures of an old concept , 2010 .

[38]  Jane Law,et al.  Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach , 2013, J. Geogr. Syst..

[39]  Sergio J. Rey,et al.  PySAL: A Python Library of Spatial Analytical Methods , 2010 .

[40]  Eric Jefferis Crime modeling and mapping using geospatial technologies , 2015 .

[41]  David Christensen,et al.  Fast algorithms for the calculation of Kendall’s τ , 2005, Comput. Stat..

[42]  Efe A. Ok,et al.  The measurement of income mobility : an introduction to the literature, February, 1996 , 1996 .

[43]  Jane Law,et al.  Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level , 2014 .

[44]  E. Luciano,et al.  Value-At-Risk Trade-Off and Capital Allocation with Copulas , 2001 .

[45]  Ellen G. Cohn,et al.  Seasonal Assault and Neighborhood Deprivation in South Africa , 2012 .

[46]  Jiye Wang,et al.  Characterizing street hierarchies through network analysis and large-scale taxi traffic flow: a case study of Wuhan, China , 2016 .

[47]  Qunying Huang,et al.  Integrating big social data, computing and modeling for spatial social science , 2016 .

[48]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[49]  Jane Robert P Law,et al.  A Bayesian Approach to Modeling Binary Data: The Case of High-Intensity Crime Areas , 2004 .

[50]  David Fairbairn,et al.  Measuring Map Complexity , 2006 .

[51]  Samuel Kotz,et al.  Advances in Probability Distributions with Given Marginals , 1991 .

[52]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[53]  Martin A. Andresen Unemployment, GDP, and Crime: The Importance of Multiple Measurements of the Economy , 2015 .

[54]  Vania Ceccato,et al.  Space-time clusters of crime in Stockholm, Sweden , 2012 .

[55]  Martin A. Andresen,et al.  Crime concentrations and similarities in spatial crime patterns in a Brazilian context , 2015 .

[56]  David C. Wheeler,et al.  Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests , 2009, J. Geogr. Syst..

[57]  Jane Law,et al.  Analyzing Hotspots of Crime Using a Bayesian Spatiotemporal Modeling Approach: A Case Study of Violent Crime in the Greater Toronto Area , 2015 .

[58]  Sergio J. Rey,et al.  Spatial Analysis of Regional Income Inequality , 2001 .

[59]  H. Kile,et al.  Bandwidth Selection in Kernel Density Estimation , 2010 .

[60]  Zbigniew W. Kundzewicz,et al.  Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques , 2004 .

[61]  Antonio López-Quílez,et al.  Exploring Neighborhood Influences on Small-Area Variations in Intimate Partner Violence Risk: A Bayesian Random-Effects Modeling Approach , 2014, International journal of environmental research and public health.

[62]  Alan M. MacEachren,et al.  Map Complexity: Comparison and Measurement , 1982 .

[63]  David Bigman,et al.  Geographical targeting of poverty alleviation programs: methodology and applications in rural India , 2002 .

[64]  S. Sathiya Keerthi,et al.  Optimization Techniques for Semi-Supervised Support Vector Machines , 2008, J. Mach. Learn. Res..

[65]  D. Webber,et al.  Income Convergence Across U.S. States: An Analysis Using Measures of Concordance and Discordance , 2005 .

[66]  Wei Guo,et al.  The Local Colocation Patterns of Crime and Land-Use Features in Wuhan, China , 2017, ISPRS Int. J. Geo Inf..

[67]  Stuart E. Marsh,et al.  A Landscape Approach for Detecting and Evaluating Change in a Semi-Arid Environment , 2000 .

[68]  Marco Helbich,et al.  Crime Risk Estimation with a Commuter-Harmonized Ambient Population , 2016 .

[69]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[70]  Ricardo Costa,et al.  Space-time clustering analysis performance of an aggregated dataset: The case of wildfires in Portugal , 2015, Environ. Model. Softw..

[71]  Marco Helbich,et al.  Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis , 2015 .