CoMan: Managing Bandwidth Across Computing Frameworks in Multiplexed Datacenters

Inefficient bandwidth sharing in a datacenter network, between different application frameworks, e.g., MapReduce and Spark, can lead to <italic>inelastic</italic> and <italic>skewed</italic> usage of link bandwidth and <italic> increased completion times</italic> for the applications. Existing work, however, either solely focuses on managing computation and storage resources or controlling only sending/receiving rate at hosts. In this paper, we present CoMan, a solution that provides global in-network bandwidth management in multiplexed data centers, with two goals: improving bandwidth utilization and reducing application completion time. CoMan first designs a novel abstraction of virtual link groups (VLGs) to establish a shared bandwidth resource pool. Based on this pool, CoMan implements a three-level bandwidth allocation model, which enables elastic bandwidth sharing among computing frameworks as well as guarantees network performance for the applications. CoMan further improves the bandwidth utilization by devising a VLG dependency graph and solves an optimization problem to guide the path selection using a <inline-formula> <tex-math notation="LaTeX">$\frac{3}{2}$</tex-math><alternatives><inline-graphic xlink:href="li-ieq1-2788003.gif"/> </alternatives></inline-formula>-approximation algorithm. We conduct comprehensive trace-driven simulations as well as small-scale testbed experiments to evaluate the performance of CoMan. Extensive simulation results show that CoMan improves the bandwidth utilization and speeds up the application completion time by up to <inline-formula> <tex-math notation="LaTeX">$2.83\mathcal{\times}$</tex-math><alternatives> <inline-graphic xlink:href="li-ieq2-2788003.gif"/></alternatives></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$6.68\mathcal{\times}$</tex-math><alternatives> <inline-graphic xlink:href="li-ieq3-2788003.gif"/></alternatives></inline-formula>, respectively, compared to the ECMP <inline-formula><tex-math notation="LaTeX">$+$</tex-math><alternatives> <inline-graphic xlink:href="li-ieq4-2788003.gif"/></alternatives></inline-formula> ElasticSwitch solution. Our implementation also verifies that CoMan can realistically speed up the application completion times by <inline-formula> <tex-math notation="LaTeX">$2.32\mathrm{\times}$</tex-math><alternatives> <inline-graphic xlink:href="li-ieq5-2788003.gif"/></alternatives></inline-formula> on average.

[1]  Alex X. Liu,et al.  Friends, not foes: synthesizing existing transport strategies for data center networks , 2015, SIGCOMM 2015.

[2]  Franck Le,et al.  Network Scheduling Aware Task Placement in Datacenters , 2016, CoNEXT.

[3]  Funda Ergün,et al.  Online load balancing for MapReduce with skewed data input , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[4]  Jun Luo,et al.  Flutter: Scheduling tasks closer to data across geo-distributed datacenters , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[5]  Srikanth Kandula,et al.  Leveraging endpoint flexibility in data-intensive clusters , 2013, SIGCOMM.

[6]  Michael Abd-El-Malek,et al.  Omega: flexible, scalable schedulers for large compute clusters , 2013, EuroSys '13.

[7]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.

[8]  Bob Briscoe,et al.  Flow rate fairness: dismantling a religion , 2007, CCRV.

[9]  Haitao Wu,et al.  Explicit Path Control in Commodity Data Centers: Design and Applications , 2016, IEEE/ACM Transactions on Networking.

[10]  Haitao Wu,et al.  BCube: a high performance, server-centric network architecture for modular data centers , 2009, SIGCOMM '09.

[11]  Hong Zhang,et al.  Resilient Datacenter Load Balancing in the Wild , 2017, SIGCOMM.

[12]  Sheng Wang,et al.  Rapier: Integrating routing and scheduling for coflow-aware data center networks , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[13]  Amin Vahdat,et al.  Hedera: Dynamic Flow Scheduling for Data Center Networks , 2010, NSDI.

[14]  Jian Guo,et al.  Pricing Intra-Datacenter Networks with Over-Committed Bandwidth Guarantee , 2017, USENIX ATC.

[15]  Prashant J. Shenoy,et al.  CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines , 2011, VEE.

[16]  Li Li,et al.  Joint power optimization of data center network and servers with correlation analysis , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[17]  Ion Stoica,et al.  FairCloud: sharing the network in cloud computing , 2011, SIGCOMM '12.

[18]  Xiaodong Wang,et al.  CARPO: Correlation-aware power optimization in data center networks , 2012, 2012 Proceedings IEEE INFOCOM.

[19]  Aditya Akella,et al.  CLARINET: WAN-Aware Optimization for Analytics Queries , 2016, OSDI.

[20]  Michael I. Jordan,et al.  Managing data transfers in computer clusters with orchestra , 2011, SIGCOMM.

[21]  Dan Li,et al.  Software defined green data center network with exclusive routing , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[22]  Carlo Curino,et al.  Apache Hadoop YARN: yet another resource negotiator , 2013, SoCC.

[23]  Albert G. Greenberg,et al.  The cost of a cloud: research problems in data center networks , 2008, CCRV.

[24]  Keqiang He,et al.  AC/DC TCP: Virtual Congestion Control Enforcement for Datacenter Networks , 2016, SIGCOMM.

[25]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[26]  Bo Li,et al.  Bargaining towards maximized resource utilization in video streaming datacenters , 2012, 2012 Proceedings IEEE INFOCOM.

[27]  Ming Zhang,et al.  MicroTE: fine grained traffic engineering for data centers , 2011, CoNEXT '11.

[28]  Xiaobo Zhou,et al.  Leveraging Endpoint Flexibility when Scheduling Coflows across Geo-distributed Datacenters , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[29]  Scott Shenker,et al.  Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling , 2010, EuroSys '10.

[30]  Wei Bai,et al.  Information-Agnostic Flow Scheduling for Commodity Data Centers , 2015, NSDI.

[31]  Sujata Banerjee,et al.  ElasticSwitch: practical work-conserving bandwidth guarantees for cloud computing , 2013, SIGCOMM.

[32]  Nick McKeown,et al.  pFabric: minimal near-optimal datacenter transport , 2013, SIGCOMM.

[33]  Albert G. Greenberg,et al.  Sharing the Data Center Network , 2011, NSDI.

[34]  Amin Vahdat,et al.  A scalable, commodity data center network architecture , 2008, SIGCOMM '08.

[35]  Ali Munir,et al.  Minimizing flow completion times in data centers , 2013, 2013 Proceedings IEEE INFOCOM.

[36]  Jie Wu,et al.  DCube: A family of network structures for containerized data centers using dual-port servers , 2014, Comput. Commun..

[37]  David A. Maltz,et al.  Surviving failures in bandwidth-constrained datacenters , 2012, CCRV.

[38]  Antony I. T. Rowstron,et al.  Decentralized task-aware scheduling for data center networks , 2014, SIGCOMM.

[39]  Ishai Menache,et al.  Network-Aware Scheduling for Data-Parallel Jobs: Plan When You Can , 2015, Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication.

[40]  Hai Jin,et al.  A cooperative game based allocation for sharing data center networks , 2013, 2013 Proceedings IEEE INFOCOM.

[41]  Garret Swart,et al.  Balancing reducer skew in MapReduce workloads using progressive sampling , 2012, SoCC '12.

[42]  Andrew V. Goldberg,et al.  Quincy: fair scheduling for distributed computing clusters , 2009, SOSP '09.

[43]  Ion Stoica,et al.  Efficient coflow scheduling with Varys , 2015, SIGCOMM.

[44]  Paramvir Bahl,et al.  Low Latency Geo-distributed Data Analytics , 2015, SIGCOMM.

[45]  Hai Jin,et al.  Fair Network Bandwidth Allocation in IaaS Datacenters via a Cooperative Game Approach , 2016, IEEE/ACM Transactions on Networking.

[46]  Jian Guo,et al.  eBA: Efficient Bandwidth Guarantee Under Traffic Variability in Datacenters , 2017, IEEE/ACM Transactions on Networking.

[47]  Bo Li,et al.  Towards performance-centric fairness in datacenter networks , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[48]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[49]  Magdalena Balazinska,et al.  SkewTune: mitigating skew in mapreduce applications , 2012, SIGMOD Conference.

[50]  Randy H. Katz,et al.  Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center , 2011, NSDI.

[51]  Ion Stoica,et al.  Efficient Coflow Scheduling Without Prior Knowledge , 2015, SIGCOMM.

[52]  Sujata Banerjee,et al.  ElasticTree: Saving Energy in Data Center Networks , 2010, NSDI.

[53]  Jie Wu,et al.  VLCcube: A VLC Enabled Hybrid Network Structure for Data Centers , 2017, IEEE Transactions on Parallel and Distributed Systems.