A stabilized local RBF collocation method for incompressible Navier-Stokes equations

[1]  Afonso Paiva,et al.  RBF liquids , 2020, ACM Trans. Graph..

[2]  Lihua Wang,et al.  A weighted meshfree collocation method for incompressible flows using radial basis functions , 2020, J. Comput. Phys..

[3]  Chennakesava Kadapa,et al.  Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier-Stokes: Applications to fluid-structure interaction , 2020, Journal of Fluids and Structures.

[4]  Chein-Shan Liu,et al.  Optimal shape parameter in the MQ-RBF by minimizing an energy gap functional , 2018, Appl. Math. Lett..

[5]  Alessandro Veneziani,et al.  Algebraic splitting methods for the steady incompressible Navier Stokes equations at moderate Reynolds numbers , 2018 .

[6]  J. Kuipers,et al.  Direct Numerical Simulation of Fluid Flow and Mass Transfer in Dense Fluid-particle Systems with Surface Reactions , 2018 .

[7]  Shuying Zhai,et al.  RBF-FD method for the high dimensional time fractional convection-diffusion equation , 2017 .

[8]  Wen Chen,et al.  A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals , 2017 .

[9]  Gianluigi Rozza,et al.  On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics , 2017, J. Sci. Comput..

[10]  Chuanzeng Zhang,et al.  Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method , 2016 .

[11]  Chuanzeng Zhang,et al.  RBF collocation method and stability analysis for phononic crystals , 2016 .

[12]  Ján Sládek,et al.  A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals , 2016, J. Comput. Phys..

[13]  Antonio Souto-Iglesias,et al.  Experimental investigation of dynamic pressure loads during dam break , 2013, 1308.0115.

[14]  F. Shi,et al.  Dimension splitting method for the three dimensional rotating Navier-Stokes equations , 2012 .

[15]  Pietro Asinari,et al.  Artificial compressibility method revisited: Asymptotic numerical method for incompressible Navier-Stokes equations , 2010, J. Comput. Phys..

[16]  P. Nair,et al.  A compact RBF-FD based meshless method for the incompressible Navier—Stokes equations , 2009 .

[17]  Y. Sanyasiraju,et al.  Local RBF‐FD solutions for steady convection–diffusion problems , 2007 .

[18]  Fotis Sotiropoulos,et al.  Fractional step artificial compressibility schemes for the unsteady incompressible Navier-Stokes equations , 2007 .

[19]  Andrea Crivellini,et al.  An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[20]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[21]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[22]  B. Rivière,et al.  Esaim: Mathematical Modelling and Numerical Analysis a Splitting Method Using Discontinuous Galerkin for the Transient Incompressible Navier-stokes Equations , 2022 .

[23]  Arthur Veldman,et al.  A Volume-of-Fluid based simulation method for wave impact problems , 2005 .

[24]  C. Shu,et al.  An upwind local RBF-DQ method for simulation of inviscid compressible flows , 2005 .

[25]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[26]  G. Doolen,et al.  Comparison of the Lattice Boltzmann Method and the Artificial Compressibility Method for Navier-Stokes Equations , 2002 .

[27]  Mark A. Christon,et al.  Dealing with pressure: FEM solution strategies for the pressure in the time‐dependent Navier–Stokes equations , 2002 .

[28]  Tzung-hang Lee,et al.  Numerical Simulations of Hydraulic Jumps in Water Sloshing and Water Impacting , 2002 .

[29]  Nam Mai-Duy,et al.  Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks , 2001 .

[30]  Chieh-Sen Huang,et al.  A Locally Conservative Eulerian-Lagrangian Finite Difference Method for a Parabolic Equation , 2001 .

[31]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[32]  Richard W. Healy,et al.  Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method , 1998 .

[33]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[34]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[35]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[36]  J. T. Beale,et al.  The initial value problem for the navier-stokes equations with a free surface , 1981 .

[37]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[38]  J. U. Brackbill,et al.  BAAL: a code for calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh , 1975 .

[39]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[40]  K. Marimuthu,et al.  3D finite element model to predict machining induced residual stresses using arbitrary lagrangian eulerian approach , 2018 .

[41]  G. Fasshauer,et al.  Computation of Static Deformations and Natural Frequencies of Shear Deformable Plates by an RBF-Pseudospectral Method with an Optimal Shape Parameter , 2007 .

[42]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[43]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[44]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[45]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[46]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[47]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .