Control of electrical alternans in simulations of paced myocardium using extended time-delay autosynchronization.

Experimental studies have linked alternans, an abnormal beat-to-beat alternation of cardiac action potential duration, to the genesis of lethal arrhythmias such as ventricular fibrillation. Prior studies have considered various closed-loop feedback control algorithms for perturbing interstimulus intervals in such a way that alternans is suppressed. However, some experimental cases are restricted in that the controller's stimuli must preempt those of the existing waves that are propagating in the tissue, and therefore only shortening perturbations to the underlying pacing are allowed. We present results demonstrating that a technique known as extended time-delay autosynchronization (ETDAS) can effectively control alternans locally while operating within the above constraints. We show that ETDAS, which has already been used to control chaos in physical systems, has numerous advantages over previously proposed alternans control schemes.

[1]  N. B. Strydom,et al.  The influence of boot weight on the energy expenditure of men walking on a treadmill and climbing steps , 2004, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Kestutis Pyragas Control of chaos via extended delay feedback , 1995 .

[4]  Daniel J. Gauthier,et al.  Control of cardiac alternans in a mapping model with memory , 2004 .

[5]  D. Chialvo,et al.  Low dimensional chaos in cardiac tissue , 1990, Nature.

[6]  Blas Echebarria,et al.  Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. , 2001, Physical review letters.

[7]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[8]  Daniel J. Gauthier,et al.  Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps , 1998 .

[9]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[10]  Visarath In,et al.  Control of Human Atrial Fibrillation , 2000, Int. J. Bifurc. Chaos.

[11]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.

[12]  M. Zaniboni,et al.  Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. , 2000, American journal of physiology. Heart and circulatory physiology.

[13]  Daniel J Gauthier,et al.  Experimental control of cardiac muscle alternans. , 2002, Physical review letters.

[14]  R. Gilmour,et al.  Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. , 1995, Circulation research.

[15]  Daniel J. Gauthier,et al.  Comment on ``Dynamic Control of Cardiac Alternans'' , 1997 .

[16]  Z. Qu Nonlinear Dynamic Control of Irregular Cardiac Rhythms , 2004, Journal of cardiovascular electrophysiology.

[17]  Karma,et al.  Spiral breakup in model equations of action potential propagation in cardiac tissue. , 1993, Physical review letters.

[18]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[19]  Daniel J. Gauthier,et al.  Prevalence of Rate-Dependent Behaviors in Cardiac Muscle , 1999 .

[20]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[21]  J. Rogers Chaos , 1876 .

[22]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Daniel J Gauthier,et al.  The Restitution Portrait: , 2004, Journal of cardiovascular electrophysiology.

[24]  Daniel J Gauthier,et al.  Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  K Hall,et al.  Restricted feedback control of one-dimensional maps. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Joshua E S Socolar,et al.  Design and robustness of delayed feedback controllers for discrete systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[28]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[29]  Robert F Gilmour,et al.  Control of electrical alternans in canine cardiac purkinje fibers. , 2006, Physical review letters.

[30]  Flavio H. Fenton,et al.  SPATIOTEMPORAL CONTROL OF WAVE INSTABILITIES IN CARDIAC TISSUE , 1999 .

[31]  Mari Watanabe,et al.  Strategy for control of complex low-dimensional dynamics in cardiac tissue , 1996, Journal of mathematical biology.

[32]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[33]  F. Fenton,et al.  Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. , 2002, Chaos.

[34]  B B Lerman,et al.  Nonlinear-dynamical arrhythmia control in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Daniel J. Gauthier,et al.  Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method. , 2002, Chaos.

[36]  D. Adam,et al.  Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. , 1984, Journal of electrocardiology.

[37]  Daniel J. Gauthier,et al.  Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis. , 1997, Chaos.

[38]  A. Wear CIRCULATION , 1964, The Lancet.

[39]  Daniel J. Gauthier,et al.  Stabilizing unstable steady states using extended time-delay autosynchronization. , 1998, Chaos.

[40]  J. Socolar,et al.  Failure of linear control in noisy coupled map lattices , 1997, chao-dyn/9712018.