Integration des véhicules électriques dans les réseaux électriques : Modèles d’affaire et contraintes techniques pour constructeurs automobiles

Les ventes de Vehicules Electriques (VE) ont fortement augmente ces dernieres annees. Si les processus de charge de ces VE ne sont pas geres de maniere intelligente, ils risquent de surcharger les reseaux electriques. Inversement, les VE pourraient representer une opportunite pour ces reseaux en tant qu'unites de stockage distribuees.Cette these se propose d’etudier l’integration intelligente des vehicules rechargeables dans les reseaux electriques d’un point de vue technique, reglementaire et economique. Dans un premier temps, le cadre general necessaire au developpement de ces solutions est passe en revue : les domaines d’application et scenarios de reference sont decrits, les acteurs principaux listes, et les defis principaux analyses.Ensuite, l’accent est mis sur les services systeme, et plus particulierement sur le reglage de frequence. Les conditions reglementaires permettant la participation d’une flotte de vehicules electriques a ce service sont etudiees a partir d’une revue des regles de gestionnaires de reseau de transport existants. De nombreuses simulations techniques et economiques sont realisees, pour differentes regles de marche.Les services reseau locaux sont ensuite consideres. Un eco-quartier est modelise : il comprend differentes unites de consommation et des sources de production distribuees. Un gestionnaire energetique local est propose : son role est de controler les taux de charge / decharge des vehicules electriques de l’eco-quartier dans l’objectif de limiter les surcharges subies par le transformateur electrique de l’eco-quartier. Des consequences economiques sont tirees des resultats techniques.Enfin, des resultats experimentaux sont presentes. Le comportement de deux VE est analyse, dont un dispose de capacites bidirectionnelles. Les preuves de concept experimentales confirment les capacites theoriques des vehicules electriques : il s’agit d’unites a temps de reponse tres court (meme en considerant l’architecture TIC complete) et ils sont capables de reagir a des signaux reseau tres precisement.

[1]  Adrian Waygood Transformers , 2018, An Introduction to Electrical Science.

[2]  T. Short Voltage Regulation , 2018, Electric Power Distribution Handbook.

[3]  B. Sandén,et al.  Systems Perspectives on Electromobility , 2017 .

[4]  Marc Petit,et al.  Financial shortfall for electric vehicles: Economic impacts of Transmission System Operators market designs , 2016 .

[5]  R. Hakvoort,et al.  Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design , 2016 .

[6]  Managing Distributed Energy Resources in a Smart Grid Environment: A review for incentives, aggregation and market design , 2016 .

[7]  Pavol Bauer,et al.  Implementation of dynamic charging and V2G using Chademo and CCS/Combo DC charging standard , 2016, 2016 IEEE Transportation Electrification Conference and Expo (ITEC).

[8]  Seyedmahdi Izadkhast,et al.  An aggregate model of plug-in electric vehicles for primary frequency control , 2015, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[9]  Victor O. K. Li,et al.  Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services With Smart Charging Mechanism , 2014, IEEE Transactions on Smart Grid.

[10]  Eva Niesten,et al.  How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects , 2016 .

[11]  Marc Petit,et al.  Coupling local renewable energy production with electric vehicle charging: a survey of the French case , 2016 .

[12]  Olivier Beaude Modélisation et optimisation de l'interaction entre véhicules électriques et réseaux d'électricité : apport de la théorie des jeux , 2015 .

[13]  Marc Petit,et al.  Participation of an electric vehicle fleet to primary frequency control in France , 2015 .

[14]  Mattia Marinelli,et al.  Distribution grid services and flexibility provision by electric vehicles: A review of options , 2015, 2015 50th International Universities Power Engineering Conference (UPEC).

[15]  Marc Petit,et al.  Transformer operating conditions under introduction of PV and EVs in an eco-district , 2015, 2015 IEEE Power & Energy Society General Meeting.

[16]  Yannick Perez,et al.  Aggregation of demand side flexibility in a smart grid: A review for European market design , 2015, 2015 12th International Conference on the European Energy Market (EEM).

[17]  M. Derdevet Énergie, l’Europe en réseaux , 2015 .

[18]  Willett Kempton,et al.  Deployment of Vehicle-to-Grid Technology and Related Issues , 2015 .

[19]  Akihiko Yokoyama,et al.  Implementation of autonomous distributed V2G to electric vehicle and DC charging system , 2015 .

[20]  Lennart Söder,et al.  Distributed generation and distribution pricing : Why do we need new tariff design methodologies? , 2015 .

[21]  M. Ha-Duong,et al.  Climate change 2014 - Mitigation of climate change , 2015 .

[22]  Inmaculada Zamora,et al.  Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches , 2014 .

[23]  Tom Rodden,et al.  Smart grids, smart users? The role of the user in demand side management , 2014 .

[24]  Marc Petit,et al.  Diversity of transmission system operators for Grid Integrated Vehicles , 2014, 11th International Conference on the European Energy Market (EEM14).

[25]  Paul Smith,et al.  Studying the Maximum Instantaneous Non-Synchronous Generation in an Island System—Frequency Stability Challenges in Ireland , 2014, IEEE Transactions on Power Systems.

[26]  Jean-Pascal van Ypersele de Strihou Climate Change 2014 - Synthesis Report , 2015 .

[27]  Tom Holvoet,et al.  A comparison of two GIV mechanisms for providing ancillary services at the University of Delaware , 2013, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[28]  Christian Calvillo,et al.  Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles , 2013 .

[29]  Angelina H.M.E. Reinders,et al.  Empowering the end-user in smart grids: Recommendations for the design of products and services , 2013 .

[30]  Steven Wong,et al.  Demand response potential of water heaters to mitigate minimum generation conditions , 2013, 2013 IEEE Power & Energy Society General Meeting.

[31]  Sekyung Han,et al.  A practical battery wear model for electric vehicle charging applications , 2013, 2013 IEEE Power & Energy Society General Meeting.

[32]  Zechun Hu,et al.  Decentralized Vehicle-to-Grid Control for Primary Frequency Regulation Considering Charging Demands , 2013, IEEE Transactions on Power Systems.

[33]  Fabio Polonara,et al.  Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems , 2013 .

[34]  J. Aghaei,et al.  Demand response in smart electricity grids equipped with renewable energy sources: A review , 2013 .

[35]  Yi Ding,et al.  Development of a dso-market on flexibility services , 2013 .

[36]  Johanna Rosenlind,et al.  Lifetime Modeling and Management of Transformers , 2013 .

[37]  M. Ilic,et al.  Stochastic co-optimization of charging and frequency regulation by electric vehicles , 2012, 2012 North American Power Symposium (NAPS).

[38]  Peter Bach Andersen,et al.  A comparison of electric vehicle integration projects , 2012, 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe).

[39]  Quentin Badey,et al.  Étude des mécanismes et modélisation du vieillissement des batteries lithium-ion dans le cadre d’un usage automobile , 2012 .

[40]  Mohamed A. El-Sharkawi,et al.  Optimal Combined Bidding of Vehicle-to-Grid Ancillary Services , 2012, IEEE Transactions on Smart Grid.

[41]  Ali T. Al-Awami,et al.  Coordinating Vehicle-to-Grid Services With Energy Trading , 2012, IEEE Transactions on Smart Grid.

[42]  Nick Jenkins,et al.  Investigation of Domestic Load Control to Provide Primary Frequency Response Using Smart Meters , 2012, IEEE Transactions on Smart Grid.

[43]  Dionysios Aliprantis,et al.  Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles , 2012, IEEE Transactions on Smart Grid.

[44]  Sekyung Han,et al.  Economic assessment on V2G frequency regulation regarding the battery degradation , 2012, 2012 IEEE PES Innovative Smart Grid Technologies (ISGT).

[45]  Murray Edington,et al.  Energy efficiency in plug-in hybrid electric vehicle chargers: Evaluation and comparison of front end AC-DC topologies , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[46]  Dragan Maksimovic,et al.  Electric vehicle charge optimization including effects of lithium-ion battery degradation , 2011, 2011 IEEE Vehicle Power and Propulsion Conference.

[47]  Sinan Li,et al.  A Design Methodology for Smart LED Lighting Systems Powered By Weakly Regulated Renewable Power Grids , 2011, IEEE Transactions on Smart Grid.

[48]  Shun-Hsien Huang,et al.  System Inertial Frequency Response estimation and impact of renewable resources in ERCOT interconnection , 2011, 2011 IEEE Power and Energy Society General Meeting.

[49]  Chengke Zhou,et al.  Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems , 2011, IEEE Transactions on Energy Conversion.

[50]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[51]  P Frías,et al.  Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks , 2011, IEEE Transactions on Power Systems.

[52]  Bart De Schutter,et al.  Demand Response With Micro-CHP Systems , 2011, Proceedings of the IEEE.

[53]  Alan Millner,et al.  Modeling Lithium Ion battery degradation in electric vehicles , 2010, 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply.

[54]  David Infield,et al.  Domestic electricity use: A high-resolution energy demand model , 2010 .

[55]  E. Allen,et al.  Tracking the Eastern Interconnection frequency governing characteristic , 2010, IEEE PES General Meeting.

[56]  Ramteen Sioshansi,et al.  The Value of Plug-In Hybrid Electric Vehicles as Grid Resources , 2010 .

[57]  J. Apt,et al.  Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization , 2010 .

[58]  Jay F. Whitacre,et al.  The economics of using plug-in hybrid electric vehicle battery packs for grid storage , 2010 .

[59]  Sandia Report,et al.  Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide A Study for the DOE Energy Storage Systems Program , 2010 .

[60]  B. Berg Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources , 2010 .

[61]  Dinh Vinh Do Diagnostic de batteries lithium ion dans les applications embarquées , 2010 .

[62]  R. Bessa,et al.  The role of an aggregator agent for EV in the electricity market , 2010 .

[63]  Ahmad Faruqui,et al.  Unlocking the €53 Billion Savings from Smart Meters in the EU - How Increasing the Adoption of Dynamic Tariffs Could Make or Break the EU’s Smart Grid Investment , 2009 .

[64]  Gilles Malarange,et al.  Construction d'une offre de services du stockage pour les réseaux de distribution dans un contexte réglementaire dérégulé , 2009 .

[65]  Ali Emadi,et al.  Modern electric, hybrid electric, and fuel cell vehicles : fundamentals, theory, and design , 2009 .

[66]  Molly O. Baringer,et al.  State of the Climate in 2008 , 2009 .

[67]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[68]  Martin Hennebel Valorisation des services système sur un réseau de transport d'électricité en environnement concurrentiel , 2009 .

[69]  Willett Kempton,et al.  A Test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM , 2009 .

[70]  Yu Chen,et al.  Frequency analysis for planned islanding operation in the Danish distribution system - Bornholm , 2008, 2008 43rd International Universities Power Engineering Conference.

[71]  J. Glachant,et al.  The Diversity of Design of TSOs , 2008 .

[72]  Zhenyu Huang,et al.  Load component database of household appliances and small office equipment , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[73]  Adisp,et al.  Enquête nationale transports et déplacements - 2008 , 2008 .

[74]  D. Kirschen,et al.  A Survey of Frequency and Voltage Control Ancillary Services—Part I: Technical Features , 2007, IEEE Transactions on Power Systems.

[75]  Venizelos Efthymiou,et al.  STRATEGIC RESEARCH AGENDA FOR EUROPE’S ELECTRICITY NETWORKS OF THE FUTURE: European Technology Platform SmartGrids , 2007 .

[76]  I. Erlich,et al.  European Balancing Act , 2007, IEEE Power and Energy Magazine.

[77]  D. Kirschen,et al.  A Survey of Frequency and Voltage Control Ancillary Services—Part II: Economic Features , 2007, IEEE Transactions on Power Systems.

[78]  R. Raineri,et al.  Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison , 2006 .

[79]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[80]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[81]  Willett Kempton,et al.  Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy , 2005 .

[82]  J. Iannucci,et al.  Energy Storage Benefits and Market Analysis Handbook A Study for the DOE Energy Storage Systems Program , 2004 .

[83]  Herbert L Case,et al.  An accelerated calendar and cycle life study of Li-ion cells. , 2001 .

[84]  S. Ihara,et al.  Modeling air conditioner load for power system studies , 1998 .

[85]  J. A. Amalfi,et al.  An optimization-based method for unit commitment , 1992 .