On a Novel Geometric Representation of Rotation

This paper presents a novel method of representing rotation and its application to representing the ranges of motion of coupled joints in the human body, using planar maps. The present work focuses on the viability of this representation for situations that relied on maps on a unit sphere. Maps on a unit sphere have been used in diverse applications such as Gauss map, visibility maps, axis-angle and Euler-angle representations of rotation etc. Computations on a spherical surface are difficult and computationally expensive; all the above applications suffer from problems associated with singularities at the poles. There are methods to represent the ranges of motion of such joints using two-dimensional spherical polygons. The present work proposes to use multiple planar domain “cube” instead of a single spherical domain, to achieve the above objective. The parameterization on the planar domains is easy to obtain and convert to spherical coordinates. Further, there is no localized and extreme distortion of the parameter space and it gives robustness to the computations. The representation has been compared with the spherical representation in terms of computational ease and issues related to singularities. Methods have been proposed to represent joint range of motion and coupled degrees of freedom for various joints in digital human models (such as shoulder, wrist and fingers). A novel method has been proposed to represent twist in addition to the existing swing-swivel representation.