Quantitative Body DW-MRI Biomarkers Uncertainty Estimation Using Unscented Wild-Bootstrap

We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical use. Model-based bootstrap techniques, for example, assume an underlying linear model for residuals rescaling and cannot be utilized directly for body diffusion parameters uncertainty estimation due to the non-linearity of the body diffusion model. To offset this limitation, our method uses the Unscented transform to compute the residuals rescaling parameters from the non-linear body diffusion model, and then applies the wild-bootstrap method to infer the body diffusion parameters uncertainty. Validation through phantom and human subject experiments shows that our method identify the regions with higher uncertainty in body DWI-MRI model parameters correctly with realtive error of -36% in the uncertainty values.

[1]  Markus Uhl,et al.  Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. , 2011, European journal of radiology.

[2]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[3]  Bernd Hamm,et al.  Diffusion‐weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft‐tissue sarcomas , 2008, Journal of magnetic resonance imaging : JMRI.

[4]  D. Collins,et al.  Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. , 2011, AJR. American journal of roentgenology.

[5]  M. Powell The BOBYQA algorithm for bound constrained optimization without derivatives , 2009 .

[6]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[7]  Hersh Chandarana,et al.  Comparison of Biexponential and Monoexponential Model of Diffusion Weighted Imaging in Evaluation of Renal Lesions: Preliminary Experience , 2010, Investigative radiology.

[8]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[9]  M. Perazella,et al.  Current status of gadolinium toxicity in patients with kidney disease. , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[10]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[11]  Takeshi Johkoh,et al.  Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade. , 2011, Radiology.

[12]  W. T. Dixon,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. , 1988, Radiology.

[13]  Timothy D Johnson,et al.  The parametric response map is an imaging biomarker for early cancer treatment outcome , 2009, Nature Medicine.

[14]  Xiaoying Wang,et al.  Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: Preliminary experience , 2007, Journal of magnetic resonance imaging : JMRI.

[15]  Simon K. Warfield,et al.  Toward an accurate multi-fiber assessment strategy for clinical practice , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[16]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[17]  Thomas L. Chenevert Principles of Diffusion-Weighted Imaging (DW-MRI) as Applied to Body Imaging , 2010 .

[18]  Masoom A. Haider,et al.  Change in diffusion weighted MRI during liver cancer radiotherapy: Preliminary observations , 2009, Acta oncologica.