Automated preparation of Kepler time series of planet hosts for asteroseismic analysis

One of the tasks of the Kepler Asteroseismic Science Operations Center (KASOC) is to provide asteroseismic analyses on Kepler Objects of Interest (KOIs). However, asteroseismic analysis of planetary host stars presents some unique complications with respect to data preprocessing, compared to pure asteroseismic targets. If not accounted for, the presence of planetary transits in the photometric time series often greatly complicates or even hinders these asteroseismic analyses. This drives the need for specialised methods of preprocessing data to make them suitable for asteroseismic analysis. In this paper we present the KASOC Filter, which is used to automatically prepare data from the Kepler/K2 mission for asteroseismic analyses of solar-like planet host stars. The methods are very eective at removing unwanted signals of both instrumental and planetary origins and produce significantly cleaner photometric time series than the original data. The methods are automated and can therefore easily be applied to a large number of stars. The application of the filter is not restricted to planetary hosts, but can be applied to any solar-like or red giant stars observed by Kepler/K2.

[1]  S. Murphy An examination of some characteristics of Kepler short- and long-cadence data , 2012, 1201.6184.

[2]  Howard Isaacson,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[3]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[4]  H. Kjeldsen,et al.  DETECTION OF ℓ = 4 AND ℓ = 5 MODES IN 12 YEARS OF SOLAR VIRGO-SPM DATA—TESTS ON KEPLER OBSERVATIONS OF 16 Cyg A AND B , 2014, 1401.7003.

[5]  Cambridge,et al.  Characterising stellar micro-variability for planetary transit searches , 2003, astro-ph/0310381.

[6]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[7]  M. R. Haas,et al.  A sub-Mercury-sized exoplanet , 2013, Nature.

[8]  ASTEROSEISMOLOGY OF THE OPEN CLUSTERS NGC 6791, NGC 6811, AND NGC 6819 FROM 19 MONTHS OF KEPLER PHOTOMETRY , 2012, 1205.4023.

[9]  T. Campante,et al.  Bayesian peak-bagging of solar-like oscillators using MCMC: a comprehensive guide , 2010, 1101.0084.

[10]  T. Barclay,et al.  PyKE: Reduction and analysis of Kepler Simple Aperture Photometry data , 2012 .

[11]  P. Quirion,et al.  The Octave (Birmingham-Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars , 2009, 0911.2612.

[12]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[13]  W. D. Cochran,et al.  Kepler’s Optical Phase Curve of the Exoplanet HAT-P-7b , 2009, Science.

[14]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[15]  M. Still,et al.  Demystifying Kepler Data: A Primer for Systematic Artifact Mitigation , 2012, 1207.3093.

[16]  M. R. Haas,et al.  OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE , 2010, 1001.0258.

[17]  R. Gilliland,et al.  The Kepler Asteroseismic Investigation: Scientific goals and the first results , 2010, 1007.1816.

[18]  Howard Isaacson,et al.  Stellar Spin-Orbit Misalignment in a Multiplanet System , 2013, Science.

[19]  M. Holman,et al.  HAT-P-7: A RETROGRADE OR POLAR ORBIT, AND A THIRD BODY , 2009, 0908.1672.

[20]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[21]  M. R. Haas,et al.  Kepler Mission Design, Realized Photometric Performance, and Early Science , 2010, 1001.0268.

[22]  Sara Seager,et al.  THE DISCOVERY OF ELLIPSOIDAL VARIATIONS IN THE KEPLER LIGHT CURVE OF HAT-P-7 , 2010, 1001.0413.

[23]  W. Cleveland LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression , 1981 .

[24]  P. Quirion,et al.  ASTEROSEISMIC INVESTIGATION OF KNOWN PLANET HOSTS IN THE KEPLER FIELD , 2009, 1001.0032.

[25]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[26]  S. D. Kawaler,et al.  University of Birmingham Asteroseismology of the solar analogs 16 Cyg A and B from Kepler observations , 2012 .

[27]  William F. Welsh,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES , 2011, 1107.5207.

[28]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[29]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[30]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[31]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[32]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[33]  G. Handler,et al.  Kepler Asteroseismology Program: Introduction and First Results , 2009, 1001.0139.

[34]  Jie Li,et al.  Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR , 2011, The Astrophysical Journal.

[35]  P. Quirion,et al.  Determining global parameters of the oscillations of solar-like stars , 2009, 0912.3367.

[36]  G. Jogesh Babu,et al.  Modern Statistical Methods for Astronomy: With R Applications , 2012 .

[37]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[38]  R. Gilliland,et al.  Preparation of Kepler lightcurves for asteroseismic analyses , 2011, 1103.0382.

[39]  Jessie L. Dotson,et al.  KEPLER SCIENCE OPERATIONS , 2010, 1001.0437.

[40]  P. Quirion,et al.  Automated extraction of oscillation parameters for Kepler observations of solar-type stars , 2009, 0910.2764.

[41]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[42]  H. Kjeldsen,et al.  A new method to detect solar-like oscillations at very low S/N using statistical significance testing , 2012, 1209.3792.

[43]  W. Press,et al.  Fast algorithm for spectral analysis of unevenly sampled data , 1989 .

[44]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[45]  M. Asplund,et al.  Accurate abundance patterns of solar twins and analogs - Does the anomalous solar chemical composition come from planet formation? , 2009, 0911.1893.

[46]  J. Scargle Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .

[47]  F. Grundahl,et al.  AN ASTEROSEISMIC MEMBERSHIP STUDY OF THE RED GIANTS IN THREE OPEN CLUSTERS OBSERVED BY KEPLER: NGC 6791, NGC 6819, AND NGC 6811 , 2011, 1107.1234.

[48]  Department of Physics,et al.  HAT-P-7b: An Extremely Hot Massive Planet Transiting a Bright Star in the Kepler Field , 2008, 0803.0746.

[49]  J. Schweitzer,et al.  Nonlinear time series analysis of Kepler Space Telescope data: Mutually beneficial progress , 2012 .

[50]  B. Tingley,et al.  INVESTIGATION OF SYSTEMATIC EFFECTS IN KEPLER DATA: SEASONAL VARIATIONS IN THE LIGHT CURVE OF HAT-P-7b , 2013, 1307.6959.

[51]  T. Bedding,et al.  Variability of M giant stars based on Kepler photometry: general characteristics , 2013, 1309.1012.

[52]  Jessie L. Dotson,et al.  THE KEPLER PIXEL RESPONSE FUNCTION , 2010, 1001.0331.