Expanding the range of ZNF804A variants conferring risk of psychosis

A trio of genome-wide association studies recently reported sequence variants at three loci to be significantly associated with schizophrenia. No sequence polymorphism had been unequivocally (P<5 × 10−8) associated with schizophrenia earlier. However, one variant, rs1344706[T], had come very close. This polymorphism, located in an intron of ZNF804A, was reported to associate with schizophrenia with a P-value of 1.6 × 10−7, and with psychosis (schizophrenia plus bipolar disorder) with a P-value of 1.0 × 10−8. In this study, using 5164 schizophrenia cases and 20 709 controls, we replicated the association with schizophrenia (odds ratio OR=1.08, P=0.0029) and, by adding bipolar disorder patients, we also confirmed the association with psychosis (added N=609, OR=1.09, P=0.00065). Furthermore, as it has been proposed that variants such as rs1344706[T]—common and with low relative risk—may also serve to identify regions harboring less common, higher-risk susceptibility alleles, we searched ZNF804A for large copy number variants (CNVs) in 4235 psychosis patients, 1173 patients with other psychiatric disorders and 39 481 controls. We identified two CNVs including at least part of ZNF804A in psychosis patients and no ZNF804A CNVs in controls (P=0.013 for association with psychosis). In addition, we found a ZNF804A CNV in an anxiety patient (P=0.0016 for association with the larger set of psychiatric disorders).

R A Ophoff | T Sigmundsson | Pall I. Olason | S Cichon | L Peltonen | H. Stefánsson | D. Rujescu | S. Cichon | O. Pietiläinen | A. Ingason | S. Steinberg | R. Fossdal | E. Sigurdsson | T. Sigmundsson | T. Hansen | T. Thorgeirsson | I. Giegling | H. Möller | A. Hartmann | G. Fraser | N. Walker | J. Lonnqvist | J. Suvisaari | A. Tuulio-Henriksson | T. Paunio | T. Toulopoulou | E. Bramon | M. Ruggeri | E. Vassos | S. Tosato | M. Walshe | Tao Li | S. Djurovic | I. Melle | L. Kiemeney | U. Thorsteinsdóttir | A. Kong | O. Andreassen | R. Ophoff | M. Rietschel | T. Werge | H. Pétursson | M. Nöthen | L. Peltonen | D. Collier | D. Clair | K. Stefánsson | R. Cantor | I. Bitter | I. Agartz | J. Lönnqvist | T. Toulopoulou | P. Olason | O. Mors | P. Mortensen | Ó. Gústafsson | M. Nyegaard | A. Børglum | M. Nordentoft | D. Hougaard | B. No̸rgaard-Pedersen | Y. Böttcher | R. Breuer | H. Rasmussen | M. Mattheisen | J. Réthelyi | E. Strengman | L. Abramova | V. Kaleda | J. Yoon | V. Golimbet | E. Jönsson | L. Terenius | L. Athanasiu | G. Jürgens | B. Glenthøj | N. Freimer | R. Murray | P. Mortensen | D. Collier | T. Li | I. H. Gudjonsdottir | A Kong | U Thorsteinsdottir | K Stefansson | M Rietschel | M M Nöthen | D Rujescu | I Giegling | D A Collier | M Mattheisen | M Walshe | E Bramon | T Li | O A Andreassen | H-J Möller | L A Kiemeney | O Gustafsson | S Steinberg | H Stefansson | L. Peltonen | S Djurovic | I Agartz | I Melle | T E Thorgeirsson | Y Böttcher | E G Jönsson | R Murray | T Paunio | R Fossdal | R M Cantor | L Terenius | T Werge | B Glenthøj | M Nyegaard | M Nordentoft | P B Mortensen | O Mors | A D Børglum | N Walker | D St Clair | S Tosato | J Yoon | A Tuulio-Henriksson | M Ruggeri | H Petursson | I Bitter | R Breuer | E Sigurdsson | P Olason | I H Gudjonsdottir | O P H Pietiläinen | A Ingason | T Hansen | L Athanasiu | J Suvisaari | J Lonnqvist | A Hartmann | G Jürgens | D Hougaard | B Norgaard-Pedersen | H B Rasmussen | J M Réthelyi | E Strengman | L Abramova | V Kaleda | E Vassos | G Fraser | T Toulopoulou | N B Freimer | V Golimbet | D. A. Collier | M. Nöthen | Kaleda Vg | N. Freimer | R. Murray | Iris H Gudjonsdottir | Y. Bottcher | Gillian Fraser | Robin M. Murray

[1]  P. Visscher,et al.  Rare chromosomal deletions and duplications increase risk of schizophrenia , 2008, Nature.

[2]  J. Seidman,et al.  Transcription factor haploinsufficiency: when half a loaf is not enough. , 2002, The Journal of clinical investigation.

[3]  S. Cichon,et al.  Neural Mechanisms of a Genome-Wide Supported Psychosis Variant , 2009, Science.

[4]  John P. Rice,et al.  Singleton deletions throughout the genome increase risk of bipolar disorder , 2009, Molecular Psychiatry.

[5]  Paolo Vineis,et al.  Sequence variants at the TERT-CLPTM1L locus associate with many cancer types , 2009, Nature Genetics.

[6]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[7]  M. McCarthy,et al.  Genome-wide association studies: potential next steps on a genetic journey. , 2008, Human molecular genetics.

[8]  Jianxin Shi,et al.  Common variants on chromosome 6p22.1 are associated with schizophrenia , 2009, Nature.

[9]  Tanya M. Teslovich,et al.  A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. , 2008, American journal of human genetics.

[10]  Peter Donnelly,et al.  Progress and challenges in genome-wide association studies in humans , 2008, Nature.

[11]  Dan L Nicolae,et al.  Testing Untyped Alleles (TUNA)—applications to genome‐wide association studies , 2006, Genetic epidemiology.

[12]  Mark Gurney,et al.  The gene encoding phosphodiesterase 4D confers risk of ischemic stroke , 2003, Nature Genetics.

[13]  Pall I. Olason,et al.  Common variants conferring risk of schizophrenia , 2009, Nature.

[14]  Eran Halperin,et al.  Leveraging the HapMap correlation structure in association studies. , 2007, American journal of human genetics.

[15]  M. Daly,et al.  Evaluating and improving power in whole-genome association studies using fixed marker sets , 2006, Nature Genetics.

[16]  M. Daly,et al.  Genetic Mapping in Human Disease , 2008, Science.

[17]  Tyrone D. Cannon,et al.  Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study , 2009, The Lancet.

[18]  D. Stephan,et al.  Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. , 2006, The New England journal of medicine.

[19]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[20]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[21]  Roberto Ciccone,et al.  A 12Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. , 2008, European journal of medical genetics.

[22]  Thomas Bourgeron,et al.  Mapping autism risk loci using genetic linkage and chromosomal rearrangements , 2007, Nature Genetics.

[23]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[24]  Alexander Pertsemlidis,et al.  Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease , 2008, Nature Genetics.

[25]  Joseph A. Gogos,et al.  Strong association of de novo copy number mutations with sporadic schizophrenia , 2008, Nature Genetics.

[26]  Ayman H. Fanous,et al.  Replication of association between schizophrenia and ZNF804A in the Irish Case Control Study of Schizophrenia (ICCSS) sample , 2010, Molecular Psychiatry.

[27]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[28]  Ravinesh A. Kumar,et al.  Novel Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder , 2008, Biological Psychiatry.

[29]  Sharon J. Diskin,et al.  Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms , 2008, Nucleic acids research.

[30]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[31]  Peter McGuffin,et al.  A twin study of genetic relationships between psychotic symptoms. , 2002, The American journal of psychiatry.

[32]  Eric M. Morrow,et al.  Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry , 2008, Science.

[33]  G. Kirov,et al.  Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. , 2009, Human molecular genetics.

[34]  Joseph T. Glessner,et al.  PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. , 2007, Genome research.

[35]  A. Singleton,et al.  Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia , 2008, Science.

[36]  Thomas Haaf,et al.  Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder , 2010, neurogenetics.

[37]  J. Sebat,et al.  Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. , 2008, American journal of human genetics.

[38]  C. Spencer,et al.  Identification of loci associated with schizophrenia by genome-wide association and follow-up , 2008, Nature Genetics.

[39]  Katarzyna Chawarska,et al.  Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. , 2008, American journal of human genetics.

[40]  D. Gudbjartsson,et al.  Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes , 2007, Nature Genetics.

[41]  David B. Goldstein,et al.  A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia , 2009, PLoS genetics.

[42]  J. Stockman Association between Microdeletion and Microduplication at 16p11.2 and Autism , 2009 .

[43]  Xiaowu Gai,et al.  High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. , 2009, Genome research.

[44]  D. Pinto,et al.  Structural variation of chromosomes in autism spectrum disorder. , 2008, American journal of human genetics.