Test models for improving filtering with model errors through stochastic parameter estimation

The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

[1]  Guanrong Chen,et al.  Kalman Filtering for Interval Systems , 1999 .

[2]  Andrew J. Majda,et al.  Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation , 2010, J. Comput. Phys..

[3]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[4]  Andrew J. Majda,et al.  Mathematical test criteria for filtering complex systems: Plentiful observations , 2008, J. Comput. Phys..

[5]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[6]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[7]  R. Todling,et al.  Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis , 2000 .

[8]  A. Majda,et al.  Catastrophic filter divergence in filtering nonlinear dissipative systems , 2010 .

[9]  Andrew J. Majda,et al.  Filtering a nonlinear slow-fast system with strong fast forcing , 2010 .

[10]  Jeffrey L. Anderson,et al.  An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .

[11]  Andrew J. Majda,et al.  Mathematical strategies for filtering complex systems: Regularly spaced sparse observations , 2008, J. Comput. Phys..

[12]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[13]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[14]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[15]  B. Friedland,et al.  Estimating sudden changes of biases in linear dynamic systems , 1982 .

[16]  Andrew J Majda,et al.  Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems , 2007, Proceedings of the National Academy of Sciences.

[17]  R. Salmon,et al.  Geophysical Fluid Dynamics , 2019, Classical Mechanics in Geophysical Fluid Dynamics.

[18]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[19]  Gregory F. Lawler Introduction to Stochastic Processes , 1995 .

[20]  Andrew J. Majda,et al.  A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS ∗ , 2008 .

[21]  T. DelSole,et al.  Stochastic Models of Quasigeostrophic Turbulence , 2004 .

[22]  B. Friedland Treatment of bias in recursive filtering , 1969 .

[23]  Joseph Tribbia,et al.  The Reliability of Improvements in Deterministic Short-Range Forecasts in the Presence of Initial State and Modeling Deficiencies , 1988 .

[24]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[25]  Michael J. Rycroft,et al.  Storms in Space , 2004 .

[26]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950-95. Part II: Results , 2000 .

[27]  Istvan Szunyogh,et al.  Local ensemble Kalman filtering in the presence of model bias , 2006 .

[28]  E. Pitcher Application of Stochastic Dynamic Prediction to Real Data , 1977 .

[29]  R. Ghanem,et al.  Structural-System Identification. I: Theory , 1995 .

[30]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[31]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[32]  Andrew J. Majda,et al.  Filtering nonlinear dynamical systems with linear stochastic models , 2008 .

[33]  R. Kalman,et al.  New results in linear prediction and filtering theory Trans. AMSE , 1961 .