Shape google: Geometric words and expressions for invariant shape retrieval

The computer vision and pattern recognition communities have recently witnessed a surge of feature-based methods in object recognition and image retrieval applications. These methods allow representing images as collections of “visual words” and treat them using text search approaches following the “bag of features” paradigm. In this article, we explore analogous approaches in the 3D world applied to the problem of nonrigid shape retrieval in large databases. Using multiscale diffusion heat kernels as “geometric words,” we construct compact and informative shape descriptors by means of the “bag of features” approach. We also show that considering pairs of “geometric words” (“geometric expressions”) allows creating spatially sensitive bags of features with better discriminative power. Finally, adopting metric learning approaches, we show that shapes can be efficiently represented as binary codes. Our approach achieves state-of-the-art results on the SHREC 2010 large-scale shape retrieval benchmark.

[1]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[2]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[3]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[4]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[5]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[6]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[7]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[8]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[10]  Marc Rioux,et al.  Description of shape information for 2-D and 3-D objects , 2000, Signal Process. Image Commun..

[11]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[12]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[13]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[14]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[15]  Michael Elad,et al.  Content Based Retrieval of VRML Objects - An Iterative and Interactive Approach , 2001, Eurographics Multimedia Workshop.

[16]  Tsuhan Chen,et al.  Efficient feature extraction for 2D/3D objects in mesh representation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[17]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[18]  Michael Elad,et al.  Content based retrieval of VRML objects: an iterative and interactive approach , 2002 .

[19]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[20]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[21]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[22]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[23]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[25]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[26]  Marcin Novotni,et al.  3D zernike descriptors for content based shape retrieval , 2003, SM '03.

[27]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[29]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[30]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[31]  Silvia Biasotti,et al.  An overview on properties and efficacy of topological skeletons in shape modeling , 2003, 2003 Shape Modeling International..

[32]  Guido M. Cortelazzo,et al.  Automatic 3D modeling of textured cultural heritage objects , 2004, IEEE Transactions on Image Processing.

[33]  Weibin Liu,et al.  3D model retrieval based on 2D slice similarity measurements , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[34]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[35]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[36]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[37]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[38]  Pu Jiantao,et al.  3D model retrieval based on 2D slice similarity measurements , 2004 .

[39]  Hao Zhang Discrete Combinatorial Laplacian Operators for Digital Geometry Processing , 2004 .

[40]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[41]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[42]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[43]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[44]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[45]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[46]  Thomas A. Funkhouser,et al.  A Comparison of Text and Shape Matching for Retrieval of Online 3 D Models with statistical significance testing , 2022 .

[47]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[48]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[49]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[50]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[51]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[52]  Gregory Shakhnarovich,et al.  Learning task-specific similarity , 2005 .

[53]  Tony Tung,et al.  The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3d Shapes , 2005, Int. J. Shape Model..

[54]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[55]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[56]  Trevor Darrell,et al.  Efficient image matching with distributions of local invariant features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[58]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[59]  Thomas A. Funkhouser,et al.  Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[60]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[61]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[62]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[64]  Leonidas J. Guibas,et al.  Probabilistic fingerprints for shapes , 2006, SGP '06.

[65]  Yi Liu,et al.  Shape Topics: A Compact Representation and New Algorithms for 3D Partial Shape Retrieval , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[66]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[67]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[68]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..

[69]  Cordelia Schmid,et al.  Spatial Weighting for Bag-of-Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[70]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[71]  T. Napoléon,et al.  Multi-view 3D retrieval using silhouette intersection and multi-scale contour representation , 2007 .

[72]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[73]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[74]  Alberto Del Bimbo,et al.  Content-Based Retrieval of 3-D Objects Using Spin Image Signatures , 2007, IEEE Transactions on Multimedia.

[75]  Alexander M. Bronstein,et al.  Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[76]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[77]  Nicu Sebe,et al.  Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Michael Isard,et al.  Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[79]  Prateek Jain,et al.  Fast image search for learned metrics , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[81]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[82]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Facundo Mémoli,et al.  Gromov-Hausdorff distances in Euclidean spaces , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[84]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[85]  Umberto Castellani,et al.  Sparse points matching by combining 3D mesh saliency with statistical descriptors , 2008, Comput. Graph. Forum.

[86]  Antonio Torralba,et al.  Small codes and large image databases for recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[87]  Nikos Paragios,et al.  Graph commute times for image representation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[88]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[89]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[90]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[91]  Alexander M. Bronstein,et al.  Partial Similarity of Shapes Using a Statistical Significance Measure , 2009, IPSJ Trans. Comput. Vis. Appl..

[92]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2009, Graph. Model..

[93]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[94]  A. Bronstein,et al.  Shape Google : a computer vision approach to invariant shape retrieval , 2009 .

[95]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[96]  Analysis of scalar fields over point cloud data , 2009, SODA 2009.

[97]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[98]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[99]  Andrea Fusiello,et al.  Visual Vocabulary Signature for 3D Object Retrieval and Partial Matching , 2009, 3DOR@Eurographics.

[100]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[101]  A. Bronstein,et al.  On a relation between shape recognition algorithms based on distributions of distances , 2009 .

[102]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[103]  Radu Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, CVPR.

[104]  Przemyslaw Glomb,et al.  Detection of Interest Points on 3D Data: Extending the Harris Operator , 2009, Computer Recognition Systems 3.

[105]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[106]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[107]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[108]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[109]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  Paul L. Rosin,et al.  Rectilinearity of 3D Meshes , 2009, International Journal of Computer Vision.

[111]  Leonidas J. Guibas,et al.  Analysis of scalar fields over point cloud data , 2009, SODA.

[112]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[113]  Renaud Keriven,et al.  Non-rigid Shape Matching Using Geometry and Photometry , 2009, ACCV.

[114]  Ilan Shimshoni,et al.  On edge detection on surfaces , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[115]  Iasonas Kokkinos,et al.  SHREC 2010: robust large-scale shape retrieval benchmark , 2010 .

[116]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[117]  M. Ben-Chen,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, SIGGRAPH 2010.

[118]  Alexander M. Bronstein,et al.  The Video Genome , 2010, ArXiv.

[119]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[120]  R. Kimmel,et al.  Matching shapes by eigendecomposition of the Laplace-Beltrami operator , 2010 .

[121]  M. Ben-Chen,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, ACM Trans. Graph..

[122]  Benjamin Bustos,et al.  A Robust 3D Interest Points Detector Based on Harris Operator , 2010, 3DOR@Eurographics.

[123]  Afzal Godil,et al.  Visual Similarity Based 3D Shape Retrieval Using Bag-of-Features , 2010, 2010 Shape Modeling International Conference.

[124]  Niloy J. Mitra,et al.  Intrinsic Regularity Detection in 3D Geometry , 2010, ECCV.

[125]  Giuseppe Patanè,et al.  Multi-scale Feature Spaces for Shape Processing and Analysis , 2010, 2010 Shape Modeling International Conference.

[126]  Alexander M. Bronstein,et al.  Volumetric heat kernel signatures , 2010, 3DOR '10.

[127]  Nikos Paragios,et al.  Data fusion through cross-modality metric learning using similarity-sensitive hashing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[128]  D. Raviv Diffusion symmetries of non-rigid shapes , 2010 .

[129]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[130]  Alexander M. Bronstein,et al.  Are MSER Features Really Interesting? , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[131]  Y. Gliklikh Stochastic Analysis on Manifolds , 2011 .

[132]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[133]  Nikos Paragios,et al.  Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching , 2011, SSVM.

[134]  Alexander M. Bronstein,et al.  Shape Recognition with Spectral Distances , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[135]  Pascal Fua,et al.  LDAHash: Improved Matching with Smaller Descriptors , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.