Modeling topic control to detect influence in conversations using nonparametric topic models

Identifying influential speakers in multi-party conversations has been the focus of research in communication, sociology, and psychology for decades. It has been long acknowledged qualitatively that controlling the topic of a conversation is a sign of influence. To capture who introduces new topics in conversations, we introduce SITS—Speaker Identity for Topic Segmentation—a nonparametric hierarchical Bayesian model that is capable of discovering (1) the topics used in a set of conversations, (2) how these topics are shared across conversations, (3) when these topics change during conversations, and (4) a speaker-specific measure of “topic control”. We validate the model via evaluations using multiple datasets, including work meetings, online discussions, and political debates. Experimental results confirm the effectiveness of SITS in both intrinsic and extrinsic evaluations.

[1]  Jordan L. Boyd-Graber,et al.  Mr. LDA: a flexible large scale topic modeling package using variational inference in MapReduce , 2012, WWW.

[2]  Eric P. Xing,et al.  Dynamic Non-Parametric Mixture Models and the Recurrent Chinese Restaurant Process: with Applications to Evolutionary Clustering , 2008, SDM.

[3]  S. Ng,et al.  Gaining turns and achieving high influence ranking in small conversational groups , 1993 .

[4]  Rebecca J. Passonneau,et al.  Discourse Segmentation by Human and Automated Means , 1997, CL.

[5]  Dennis J. Moberg,et al.  Communicating Influence Attempts in Dyads: Linguistic Sedatives and Palliatives , 1986 .

[6]  Daniel Gatica-Perez,et al.  Fusing Audio-Visual Nonverbal Cues to Detect Dominant People in Group Conversations , 2010, 2010 20th International Conference on Pattern Recognition.

[7]  Marti A. Hearst Text Tiling: Segmenting Text into Multi-paragraph Subtopic Passages , 1997, CL.

[8]  Kenneth R. Fleischmann,et al.  Modeling diverse standpoints in text classification: learning to be human by modeling human values , 2011, iConference '11.

[9]  D. Stang,et al.  Effect of interaction rate on ratings of leadership and liking. , 1973, Journal of personality and social psychology.

[10]  Philip Resnik,et al.  More than Words: Syntactic Packaging and Implicit Sentiment , 2009, NAACL.

[11]  Philip J. Cowans Probabilistic Document Modelling , 2006 .

[12]  Xiaojin Zhu,et al.  Statistical Debugging Using Latent Topic Models , 2007, ECML.

[13]  Amber E. Boydstun,et al.  Agenda Control in the 2008 Presidential Debates , 2013 .

[14]  Philip Resnik,et al.  Modeling Perspective Using Adaptor Grammars , 2010, EMNLP.

[15]  P. Lazarsfeld,et al.  6. Katz, E. Personal Influence: The Part Played by People in the Flow of Mass Communications , 1956 .

[16]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Peter L. Nacci,et al.  Reactions to Coercive and Reward Power: The Effects of Switching Influence Modes on Target Compliance , 1976 .

[18]  Hanna M. Wallach,et al.  Topic modeling: beyond bag-of-words , 2006, ICML.

[19]  Andrew McCallum,et al.  Polylingual Topic Models , 2009, EMNLP.

[20]  Johanna D. Moore,et al.  Latent Semantic Analysis for Text Segmentation , 2001, EMNLP.

[21]  Michael J. Paul,et al.  A Two-Dimensional Topic-Aspect Model for Discovering Multi-Faceted Topics , 2010, AAAI.

[22]  David B. Dunson,et al.  The dynamic hierarchical Dirichlet process , 2008, ICML '08.

[23]  Samy Bengio,et al.  Learning Influence among Interacting Markov Chains , 2005, NIPS.

[24]  Matt Gardner The Topic Browser An Interactive Tool for Browsing Topic Models , 2010 .

[25]  Xiaojin Zhu,et al.  A Topic Model for Word Sense Disambiguation , 2007, EMNLP.

[26]  David M. Blei,et al.  Connections between the lines: augmenting social networks with text , 2009, KDD.

[27]  Douglas W. Oard,et al.  Believe Me - We Can Do This! Annotating Persuasive Acts in Blog Text , 2011, Computational Models of Natural Argument.

[28]  Mark T. Palmer,et al.  Controlling conversations: Turns, topics and interpersonal control , 1989 .

[29]  Eric Fosler-Lussier,et al.  Discourse Segmentation of Multi-Party Conversation , 2003, ACL.

[30]  Gokhan Tur,et al.  Spoken Language Understanding: Systems for Extracting Semantic Information from Speech , 2011 .

[31]  Hiroshi Murase,et al.  Quantifying interpersonal influence in face-to-face conversations based on visual attention patterns , 2006, CHI Extended Abstracts.

[32]  David M. Blei,et al.  FINDING LATENT SOURCES IN RECORDED MUSIC WITH A SHIFT-INVARIANT HDP , 2009 .

[33]  Graeme Hirst,et al.  Lexical Cohesion Computed by Thesaural relations as an indicator of the structure of text , 1991, CL.

[34]  Marianne Schmid Mast,et al.  Dominance as expressed and inferred through speaking time: A meta-analysis , 2002 .

[35]  Chong Wang,et al.  Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.

[36]  Huidong Jin,et al.  Sequential Latent Dirichlet Allocation: Discover Underlying Topic Structures within a Document , 2010, 2010 IEEE International Conference on Data Mining.

[37]  Xiaojin Zhu,et al.  Incorporating domain knowledge into topic modeling via Dirichlet Forest priors , 2009, ICML '09.

[38]  Chuohao Yeo,et al.  Modeling Dominance in Group Conversations Using Nonverbal Activity Cues , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[39]  A Meta-Analysis,et al.  Dominance as Expressed and Inferred Through Speaking Time , 2002 .

[40]  Matthew Purver,et al.  A Meeting Browser that Learns , 2007, Interaction Challenges for Intelligent Assistants.

[41]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[42]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[43]  Johanna D. Moore,et al.  Automatic Segmentation of Multiparty Dialogue , 2006, EACL.

[44]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.

[45]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[46]  Michael Halliday,et al.  Cohesion in English , 1976 .

[47]  L. Stern,et al.  The Effect of Influence Type and Performance Outcomes on Attitude toward the Influencer , 1992 .

[48]  N. Booth,et al.  Mapping and leveraging influencers in social media to shape corporate brand perceptions , 2011 .

[49]  Richard M. Sorrentino,et al.  The effect of quantity and quality of verbal interaction on ratings of leadership ability , 1975 .

[50]  Philip Resnik,et al.  SITS: A Hierarchical Nonparametric Model using Speaker Identity for Topic Segmentation in Multiparty Conversations , 2012, ACL.

[51]  G. Weimann The Influentials: People Who Influence People , 1994 .

[52]  Quentin Pleple,et al.  Interactive Topic Modeling , 2013 .

[53]  Eric P. Xing,et al.  Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream , 2010, UAI.

[54]  Sik Hung Ng,et al.  Power in Language: Verbal Communication and Social Influence , 1993 .

[55]  Dirk Heylen,et al.  Dominance Detection in Meetings Using Easily Obtainable Features , 2005, MLMI.

[56]  Julia Hirschberg,et al.  Identifying Agreement and Disagreement in Conversational Speech: Use of Bayesian Networks to Model Pragmatic Dependencies , 2004, ACL.

[57]  P. Lazarsfeld,et al.  Personal Influence: The Part Played by People in the Flow of Mass Communications , 1956 .

[58]  S. Planalp,et al.  Not to Change the Topic But …: A Cognitive Approach to the Management of Conversation , 1980 .

[59]  John D. Lafferty,et al.  Statistical Models for Text Segmentation , 1999, Machine Learning.

[60]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[61]  Andreas Stolcke,et al.  The ICSI Meeting Corpus , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[62]  Emily M. Bender,et al.  Detecting authority bids in online discussions , 2010, 2010 IEEE Spoken Language Technology Workshop.

[63]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[64]  Brian S. Butler,et al.  Don't look now, but we've created a bureaucracy: the nature and roles of policies and rules in wikipedia , 2008, CHI.

[65]  M. Reynolds,et al.  HOW THE NEWS SHAPES OUR CIVIC AGENDA , 2009 .

[66]  Philip Resnik,et al.  GIBBS SAMPLING FOR THE UNINITIATED , 2010 .

[67]  R. Bales,et al.  Personality and Interpersonal Behavior. , 1971 .

[68]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[69]  Jordan L. Boyd-Graber,et al.  Grammatical structures for word-level sentiment detection , 2012, NAACL.

[70]  Jean Carletta,et al.  Extractive summarization of meeting recordings , 2005, INTERSPEECH.

[71]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[72]  Michael Werman,et al.  A Linear Time Histogram Metric for Improved SIFT Matching , 2008, ECCV.

[73]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[74]  Kaye D. Trammell,et al.  Examining the New Influencers: A Self-Presentation Study of A-List Blogs , 2005 .

[75]  Thomas L. Griffiths,et al.  A Probabilistic Model of Meetings That Combines Words and Discourse Features , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[76]  J. W. Julian,et al.  The impact of quality and frequency of task contributions on perceived ability. , 1973, The Journal of social psychology.

[77]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[78]  Mark Johnson,et al.  PCFGs, Topic Models, Adaptor Grammars and Learning Topical Collocations and the Structure of Proper Names , 2010, ACL.

[79]  David M. Mimno,et al.  Reconstructing Pompeian Households , 2011, UAI.

[80]  K. Cook,et al.  Social Exchange Theory , 1989, Theoretical Sociology.

[81]  María-del-Carmen Alarcón-del-Amo,et al.  Classifying and Profiling Social Networking Site Users: A Latent Segmentation Approach , 2011, Cyberpsychology Behav. Soc. Netw..

[82]  P. Blau Exchange and Power in Social Life , 1964 .

[83]  H. Giles,et al.  Accommodation theory: Communication, context, and consequence. , 1991 .

[84]  Jimmy J. Lin,et al.  Elements of a computational model for multi-party discourse: The turn-taking behavior of Supreme Court justices , 2009, J. Assoc. Inf. Sci. Technol..

[85]  B. Szuchewycz,et al.  Power in Language: Verbal Communication and Social Influence , 1995 .

[86]  David M. Blei,et al.  Multilingual Topic Models for Unaligned Text , 2009, UAI.

[87]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[88]  S. Ng,et al.  Conversation as a resource for influence: evidence for prototypical arguments and social identification processes , 2000 .

[89]  David R. Karger,et al.  Global Models of Document Structure using Latent Permutations , 2009, NAACL.

[90]  Jacob Andreas,et al.  Detecting Influencers in Written Online Conversations , 2012 .

[91]  P. Lazarsfeld,et al.  Personal Influence: The Part Played by People in the Flow of Mass Communications , 1956 .

[92]  Gerald Friedland,et al.  Estimating Dominance in Multi-Party Meetings Using Speaker Diarization , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[93]  Hanna Wallach,et al.  Structured Topic Models for Language , 2008 .

[94]  Ron Artstein,et al.  Survey Article: Inter-Coder Agreement for Computational Linguistics , 2008, CL.

[95]  Uriel G. Foa,et al.  Chapter 13 – Resource Exchange: Toward A Structural Theory of Interpersonal Communication1 , 1972 .

[96]  David M. Blei,et al.  Syntactic Topic Models , 2008, NIPS.

[97]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[98]  R. Cialdini Influence: Science and Practice , 1984 .

[99]  Jon M. Kleinberg,et al.  Echoes of power: language effects and power differences in social interaction , 2011, WWW.

[100]  Sumit Basu,et al.  Learning Human Interactions w ith the Influence Model , 2001, NIPS 2001.

[101]  Daniel Gatica-Perez,et al.  Detection and application of influence rankings in small group meetings , 2006, ICMI '06.

[102]  Marti A. Hearst,et al.  A Critique and Improvement of an Evaluation Metric for Text Segmentation , 2002, CL.

[103]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[104]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[105]  Andrew Olney,et al.  An Orthonormal Basis for Topic Segmentation in Tutorial Dialogue , 2005, HLT.

[106]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[107]  David A. Huffaker,et al.  Dimensions of leadership and social influence in online communities , 2010 .

[108]  Jonathan T. Morgan,et al.  Annotating Social Acts: Authority Claims and Alignment Moves in Wikipedia Talk Pages , 2011 .

[109]  M. Walker,et al.  How can you say such things?!?: Recognizing Disagreement in Informal Political Argument , 2011 .

[110]  Gökhan Tür,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 1 The CALO Meeting Assistant System , 2022 .

[111]  Virginia P. Richmond,et al.  Relationships Between Vocal Activity and Perception of Communicators in Small Group Interaction. , 1977 .

[112]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[113]  Regina Barzilay,et al.  Bayesian Unsupervised Topic Segmentation , 2008, EMNLP.

[114]  Sik Hung Ng,et al.  Language and Social Influence in Small Conversational Groups , 1986 .

[115]  Thomas L. Griffiths,et al.  Unsupervised Topic Modelling for Multi-Party Spoken Discourse , 2006, ACL.

[116]  Julia Hirschberg,et al.  Empirical Studies on the Disambiguation of Cue Phrases , 1993, Comput. Linguistics.

[117]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[118]  Lauren E. Scissors,et al.  Language Style Matching Predicts Relationship Initiation and Stability , 2011, Psychological science.

[119]  Justin Grimmer,et al.  A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases , 2010, Political Analysis.

[120]  Chong Wang,et al.  Continuous Time Dynamic Topic Models , 2008, UAI.