A further study for the upper bound of the cardinality of Farey vertices and application in discrete geometry

The aim of the paper is to bring new combinatorial analytical properties of the Farey diagrams of order $(m,n)$, which are associated to the $(m,n)$-cubes. The latter are the pieces of discrete planes occurring in discrete geometry, theoretical computer sciences, and combinatorial number theory. We give a new upper bound for the number of Farey vertices $FV(m,n)$ obtained as intersections points of Farey lines (\cite{khoshnoudiradfarey}): $$\exists C>0, \forall (m,n)\in\mathbb{N}^{*2},\quad \Big|FV(m,n)\Big| \leq C m^2 n^2 (m+n) \ln^2 (mn)$$ Using it, in particular, we show that the number of $(m,n)$-cubes $\mathcal{U}_{m,n}$ verifies: $$\exists C>0, \forall (m,n)\in\mathbb{N}^{*2},\quad \Big|\mathcal{U}_{m,n}\Big| \leq C m^3 n^3 (m+n) \ln^2 (mn)$$ which is an important improvement of the result previously obtained in ~\cite{daurat_tajine_zouaoui_afpdpare}, which was a polynomial of degree 8. This work uses combinatorics, graph theory, and elementary and analytical number theory.

[2]  Jean-Marc Chassery,et al.  Duality and Geometry Straightness, Characterization and Envelope , 2006, DGCI.

[3]  T. Apostol Introduction to analytic number theory , 1976 .

[4]  M. D. McIlroy A note on discrete representation of lines , 1985, AT&T Technical Journal.

[5]  Isabelle Debled-Rennesson,et al.  Etude et reconnaissance des droites et plans discrets , 1995 .

[6]  Neighboring Fractions in Farey Subsequences , 2008, 0801.1981.

[7]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[8]  Edouard Thiel Les distances de chanfrein en analyse d'images : fondements et applications. (Chamfer distances in image analysis : basis and applications) , 1994 .

[9]  Andrey O. Matveev Relative blocking in posets , 2007, J. Comb. Optim..

[10]  Laurent Vuillon,et al.  Enumeration formula for (2, n)-cubes in discrete planes , 2012, Discret. Appl. Math..

[11]  Mohamed Tajine,et al.  About the Frequencies of Some Patterns in Digital Planes Application to Area Estimators , 2008, DGCI.

[12]  E. Thiel,et al.  Chamfer masks: discrete distance functions, geometrical properties and optimization , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[13]  Asymptotic behavior of a series of Euler's totient function $\varphi(k)$ times the index of $1/k$ in a Farey sequence , 2014, 1406.6991.

[14]  Tetsuo Asano,et al.  Variants for the Hough Transform for Line Detection , 1996, Comput. Geom..

[15]  Jean-Marc Chassery,et al.  Geometrical Representation of Shapes and Objects for Visual Perception , 1991, Geometric Reasoning for Perception and Action.

[16]  Imants D. Svalbe,et al.  On Correcting the Unevenness of Angle Distributions Arising from Integer Ratios Lying in Restricted Portions of the Farey Plane , 2004, IWCIA.

[17]  Jovisa D. Zunic,et al.  On the Number of Linear Partitions of the (m, n)-Grid , 1991, Inf. Process. Lett..

[18]  Cishen Zhang,et al.  Parallel-Beam CT Reconstruction Based on Mojette Transform and Compressed Sensing , 2013 .

[19]  R. Tomás From Farey sequences to resonance diagrams , 2014 .

[20]  Daniel Khoshnoudirad Farey lines defining Farey diagrams and application to some discrete structures , 2015 .

[21]  Eric Remy,et al.  Structures dans les sphères de chanfrein , 2000 .

[22]  Edouard Thiel,et al.  Exact medial axis with euclidean distance , 2005, Image Vis. Comput..

[23]  Pentti Haukkanen,et al.  Asymptotics of the number of threshold functions on a two-dimensional rectangular grid , 2013, Discret. Appl. Math..

[24]  G. Tenenbaum Introduction to Analytic and Probabilistic Number Theory , 1995 .

[25]  Yukiko Kenmochi,et al.  Digital Planar Surface Segmentation Using Local Geometric Patterns , 2008, DGCI.