Nonlinear aircraft flight control using the forward propagating riccati equation

This paper presents application of the forward-propagating Riccati equation (FPRE) control for the aircraft flight control system for command following and disturbance rejection. Unlike classical finite-horizon optimal control, where the differential Riccati equation is integrated backwards in time for a given final-time condition, FPRE control uses differential equations that are integrated forward in time. Although this technique is heuristic and guarantees neither performance nor stability, simplicity of the FPRE algorithm makes it attractive for applications for nonlinear systems defined using a state-dependent coefficient parameterization. The performance of the proposed flight control system is investigated via the numerical simulations using a nonlinear model of a fixed-wing aircraft.

[1]  D. T. Stansbery,et al.  Position and attitude control of a spacecraft using the state-dependent Riccati equation technique , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[2]  Dennis S. Bernstein,et al.  Faux-Riccati synthesis of nonlinear observer-based compensators for discrete-time nonlinear systems , 2014, 53rd IEEE Conference on Decision and Control.

[3]  Dennis S. Bernstein,et al.  Infinite-Horizon Linear-Quadratic Control by Forward Propagation of the Differential Riccati Equation [Lecture Notes] , 2015, IEEE Control Systems.

[4]  Chung-Yao Kao,et al.  Control of Linear Time-Varying Systems Using Forward Riccati Equation , 1997 .

[5]  Jan Roskam,et al.  Airplane Flight Dynamics and Automatic Flight Controls , 2018 .

[6]  Ozan Tekinalp,et al.  Development of a State Dependent Ricatti Equation Based Tracking Flight Controller for an Unmanned Aircraft , 2013 .

[7]  J. R. Cloutier,et al.  Nonlinear regulation and nonlinear H{sub {infinity}} control via the state-dependent Riccati equation technique: Part 3, examples , 1994 .

[8]  Jeff S. Shamma,et al.  Existence of SDRE stabilizing feedback , 2003, IEEE Trans. Autom. Control..

[9]  D. Naidu,et al.  Nonlinear Finite-Horizon Regulation and Tracking for Systems with Incomplete State Information Using Differential State Dependent Riccati Equation , 2014 .

[10]  G. Cook,et al.  Suboptimal control for the nonlinear quadratic regulator problem , 1975, Autom..

[11]  J. R. Cloutier,et al.  The capabilities and art of state-dependent Riccati equation-based design , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[12]  D. B. Ridgely,et al.  Attitude control of a satellite using the SDRE method , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  Wilson J. Rugh,et al.  Gain scheduling for H-infinity controllers: a flight control example , 1993, IEEE Trans. Control. Syst. Technol..

[14]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[15]  Eric A. Wan,et al.  State-Dependent Riccati Equation Control for Small Autonomous Helicopters , 2007 .

[16]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[17]  O. Kato,et al.  An interpretation of airplane general motion and contol as inverse problem , 1986 .

[18]  Sahjendra N. Singh,et al.  Control of Unsteady Aeroelastic System via State-Dependent Riccati Equation Method , 2005 .

[19]  J. Cloutier,et al.  Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method , 1998 .

[20]  D. Subbaram Naidu,et al.  Nonlinear optimal tracking with incomplete state information using finite-horizon State Dependent Riccati Equation (SDRE) , 2014, 2014 American Control Conference.

[21]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[22]  Tayfun Çimen,et al.  Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method , 2010, Annu. Rev. Control..

[23]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[24]  Daniel J. Bugajski,et al.  A dynamic inversion based control law with application to the high angle-of-attack research vehicle , 1990 .

[25]  Debasish Ghose,et al.  State-Dependent Riccati-Equation-Based Guidance Law for Impact-Angle-Constrained Trajectories , 2009 .

[26]  Robert F. Stengel,et al.  Flight Control Design using Nonlinear Inverse Dynamics , 1986, 1986 American Control Conference.

[27]  William L. Garrard,et al.  Nonlinear inversion flight control for a supermaneuverable aircraft , 1992 .

[28]  Keith Glover,et al.  The application of scheduled H∞ controllers to a VSTOL aircraft , 1993, IEEE Trans. Autom. Control..

[29]  Tayfun Çimen,et al.  State-Dependent Riccati Equation (SDRE) Control: A Survey , 2008 .

[30]  Andrew G. Alleyne,et al.  Design of a class of nonlinear controllers via state dependent Riccati equations , 2004, IEEE Transactions on Control Systems Technology.

[31]  Dennis S. Bernstein,et al.  Forward-integration Riccati-based output-feedback control of linear time-varying systems , 2012, 2012 American Control Conference (ACC).

[32]  J. R. Cloutier,et al.  Hypersonic guidance via the state-dependent Riccati equation control method , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).