Touchdown to take-off: at the interface of flight and surface locomotion

Small aerial robots are limited to short mission times because aerodynamic and energy conversion efficiency diminish with scale. One way to extend mission times is to perch, as biological flyers do. Beyond perching, small robot flyers benefit from manoeuvring on surfaces for a diverse set of tasks, including exploration, inspection and collection of samples. These opportunities have prompted an interest in bimodal aerial and surface locomotion on both engineered and natural surfaces. To accomplish such novel robot behaviours, recent efforts have included advancing our understanding of the aerodynamics of surface approach and take-off, the contact dynamics of perching and attachment and making surface locomotion more efficient and robust. While current aerial robots show promise, flying animals, including insects, bats and birds, far surpass them in versatility, reliability and robustness. The maximal size of both perching animals and robots is limited by scaling laws for both adhesion and claw-based surface attachment. Biomechanists can use the current variety of specialized robots as inspiration for probing unknown aspects of bimodal animal locomotion. Similarly, the pitch-up landing manoeuvres and surface attachment techniques of animals can offer an evolutionary design guide for developing robots that perch on more diverse and complex surfaces.

[1]  Lin Zhang,et al.  A Bio-inspired UAV Leg-Foot Mechanism for Landing, Grasping and Perching Tasks , 2015 .

[2]  Russ Tedrake,et al.  Experiments in Fixed-Wing UAV Perching , 2008 .

[3]  Bharat Bhushan,et al.  Generalized fractal analysis and its applications to engineering surfaces , 1995 .

[4]  Mattia Gazzola,et al.  Tail use improves performance on soft substrates in models of early vertebrate land locomotors , .

[5]  Beni Charan Mahendra Contributions to the bionomics, anatomy, reproduction and development of the indian house-gecko,Hemidactylus flaviviridis Rüppel , 1941, Proceedings / Indian Academy of Sciences.

[6]  M. Labarbera,et al.  A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi , 2005, Journal of Experimental Biology.

[7]  Robert Dudley,et al.  The descent of ant: field-measured performance of gliding ants , 2015, The Journal of Experimental Biology.

[8]  Robert Dudley,et al.  Arachnid aloft: directed aerial descent in neotropical canopy spiders , 2015, Journal of The Royal Society Interface.

[9]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Mark A. Minor,et al.  Avian-inspired passive perching mechanism for robotic rotorcraft , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Zhen Zhang,et al.  Bio-inspired trajectory generation for UAV perching , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[12]  John J Socha,et al.  Gliding flight in Chrysopelea: turning a snake into a wing. , 2011, Integrative and comparative biology.

[13]  Hyun Myung,et al.  Micro aerial vehicle type wall-climbing robot mechanism , 2013, 2013 IEEE RO-MAN.

[14]  Gray C. Thomas,et al.  A Perching Landing Gear for a Quadcopter , 2012 .

[15]  Christoph Hürzeler,et al.  A perching mechanism for micro aerial vehicles , 2009 .

[16]  Eran Sher,et al.  Miniaturization limitations of HCCI internal combustion engines , 2009 .

[17]  M. Srinivasan,et al.  Landing Strategies in Honeybees, and Possible Applications to Autonomous Airborne Vehicles , 2001, The Biological Bulletin.

[18]  T. H. Quinn,et al.  Chiropteran tendon locking mechanism , 1993, Journal of morphology.

[19]  Richard Shine,et al.  Costs of reproduction and the evolution of sexual dimorphism in a ‘flying lizard’ Draco melanopogon (Agamidae) , 1998 .

[20]  Joseph W Bahlman,et al.  Bats go head-under-heels: the biomechanics of landing on a ceiling , 2009, Journal of Experimental Biology.

[21]  Alfred J Crosby,et al.  Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing , 2015, Proceedings of the National Academy of Sciences.

[22]  Ephrahim Garcia,et al.  Longitudinal dynamics of a perching aircraft , 2006 .

[23]  M. Dickinson,et al.  The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[24]  M. Kovac,et al.  Learning from nature how to land aerial robots , 2016, Science.

[25]  Kin Huat Low,et al.  A Bio-Inspired Adaptive Perching Mechanism for Unmanned Aerial Vehicles , 2012, J. Robotics Mechatronics.

[26]  Heping Chen,et al.  Impedance control of a bio-inspired flying and adhesion robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[27]  Norbert Boeddeker,et al.  A universal strategy for visually guided landing , 2013, Proceedings of the National Academy of Sciences.

[28]  David N. Lee General Tau Theory: evolution to date. , 2009, Perception.

[29]  Mark Drela,et al.  Flight Vehicle Aerodynamics , 2014 .

[30]  E. G. Kendall,et al.  An analysis of Knoop microhardness , 1973 .

[31]  C. H. Greenewalt Dimensional relationships for flying animals , 1962 .

[32]  David Labonte,et al.  Scaling and biomechanics of surface attachment in climbing animals , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  John Lowry,et al.  Electric Vehicle Technology Explained , 2003 .

[34]  M. Holderied,et al.  Bat echolocation calls: adaptation and convergent evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.

[35]  Satoshi Shiraishi,et al.  Gliding Flight in the Japanese Giant Flying Squirrel Petaurista leucogenys , 1993 .

[36]  R. Dudley,et al.  Directed aerial descent in canopy ants , 2005, Nature.

[37]  M. G. McCay,et al.  Aerodynamic stability and maneuverability of the gliding frog Polypedates dennysi. , 2001, The Journal of experimental biology.

[38]  Robert Dudley,et al.  Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus) , 2010, Proceedings of the Royal Society B: Biological Sciences.

[39]  Kam K. Leang,et al.  A micro spherical rolling and flying robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[40]  Stanislav Gorb,et al.  Adhesion forces measured at the level of a terminal plate of the fly's seta , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  Bebni Charan Mahendra,et al.  Contributions to the bionomics, anatomy, reproduction and development of the Indian house-gecko,Hemidactylus flaviviridis RÜPpel. Part I , 1936, Proceedings / Indian Academy of Sciences.

[42]  R. Norberg,et al.  Treecreeper climbing; mechanics, energetics, and structural adaptations , 1986 .

[43]  David Lentink,et al.  Nature-inspired flight—beyond the leap , 2010, Bioinspiration & biomimetics.

[44]  Nikolaos Papanikolopoulos,et al.  Design of an improved land/air miniature robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[45]  Mark R. Cutkosky,et al.  Biologically inspired climbing with a hexapedal robot , 2008, J. Field Robotics.

[46]  Ou Ma,et al.  Bio-Inspired Trajectory Generation for UAV Perching Movement Based on Tau Theory , 2014 .

[47]  A. Nagendran,et al.  Biologically inspired legs for UAV perched landing , 2012, IEEE Aerospace and Electronic Systems Magazine.

[48]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[49]  J. Fullard,et al.  Echolocation in free-flying Atiu Swiftlets (Aerodramus sawtelli) , 1993 .

[50]  James I. Hileman,et al.  Energy Content and Alternative Jet Fuel Viability , 2010 .

[51]  S. B. Ainbinder,et al.  Hardness of polymers , 1966 .

[52]  Joe Woong Yeol,et al.  Development of multi-tentacle micro air vehicle , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[53]  Mark R. Cutkosky,et al.  Hybrid aerial and scansorial robotics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[54]  Ephrahim Garcia,et al.  Optimization of Perching Maneuvers Through Vehicle Morphing , 2008 .

[55]  K. H. Low,et al.  An optimized perching mechanism for autonomous perching with a quadrotor , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[56]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[57]  Joseph W Bahlman,et al.  Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus) , 2013, Journal of The Royal Society Interface.

[58]  Mark R. Cutkosky,et al.  Dynamic surface grasping with directional adhesion , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Hao Jiang,et al.  Planning and Control of Aggressive Maneuvers for Perching on Inclined and Vertical Surfaces , 2015 .

[60]  Dario Floreano,et al.  A perching mechanism for flying robots using a fibre-based adhesive , 2013, 2013 IEEE International Conference on Robotics and Automation.

[61]  R. Wood,et al.  Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion , 2016, Science.

[62]  Gabriel Taubin,et al.  Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia , 2015, PLoS biology.

[63]  J. E. Clark,et al.  Design of a Multimodal Climbing and Gliding Robotic Platform , 2013, IEEE/ASME Transactions on Mechatronics.

[64]  Giuseppe Loianno,et al.  Aggressive Flight With Quadrotors for Perching on Inclined Surfaces , 2016 .

[65]  Theunis Piersma,et al.  Carrying large fuel loads during sustained bird flight is cheaper than expected , 2001, Nature.

[66]  John Lowry,et al.  Electric Vehicle Technology Explained: Lowry/Electric Vehicle Technology Explained , 2012 .

[67]  S. Emerson,et al.  Toe pad morphology and mechanisms of sticking in frogs , 1980 .

[68]  Mark R. Cutkosky,et al.  Perching and vertical climbing: Design of a multimodal robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[69]  Oliver Betz,et al.  Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). , 2002, The Journal of experimental biology.

[70]  Gregory M. Crutsinger,et al.  The future of UAVs in ecology: an insider perspective from the Silicon Valley drone industry , 2016 .

[71]  Hendrik Tennekes,et al.  The simple science of flight : from insects to jumbo jets , 1996 .

[72]  George D. Quinn,et al.  Cracking and the Indentation Size Effect for Knoop Hardness of Glasses , 2003 .

[73]  W. G. Hyzer,et al.  Flight Behavior of a Fly Alighting on a Ceiling , 1962, Science.

[74]  D. Lentink Bioinspired flight control , 2014, Bioinspiration & biomimetics.

[75]  Jean-Marc Moschetta,et al.  Equilibrium Transition Study for a Hybrid MAV , 2011 .

[76]  David N. Lee,et al.  VISUAL CONTROL OF VELOCITY OF APPROACH BY PIGEONS WHEN LANDING , 1993 .

[77]  Michael Kaspari,et al.  Gliding hexapods and the origins of insect aerial behaviour , 2009, Biology Letters.

[78]  Andrew Balmford,et al.  Walk on the Wild Side: Estimating the Global Magnitude of Visits to Protected Areas , 2015, PLoS biology.

[79]  Wei Shyy,et al.  Aerodynamics of Low Reynolds Number Flyers: Index , 2007 .

[80]  Nigel E. Stork,et al.  Experimental Analysis of Adhesion of Chrysolina Polita (Chrysomelidae: Coleoptera) on a Variety of Surfaces , 1980 .

[81]  B. Tobalske,et al.  Transition from wing to leg forces during landing in birds , 2014, Journal of Experimental Biology.

[82]  P. Lissaman,et al.  Low-Reynolds-Number Airfoils , 1983 .

[83]  Mark R. Cutkosky,et al.  Landing, perching and taking off from vertical surfaces , 2011, Int. J. Robotics Res..

[84]  Robert J. Wood,et al.  Fly on the wall , 2014, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics.

[85]  Sangbae Kim,et al.  Design and fabrication of multi-material structures for bioinspired robots , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[86]  T. Kawamichi,et al.  GLIDING BEHAVIOR OF JAPANESE GIANT FLYING SQUIRRELS (PETAURISTA LEUCOGENYS) , 2002 .

[87]  Vijay Kumar,et al.  Trajectory Generation and Control for Precise Aggressive Maneuvers with Quadrotors , 2010, ISER.

[88]  Michele Lanzetta,et al.  Scaling hard vertical surfaces with compliant microspine arrays , 2005, Robotics: Science and Systems.

[89]  Gregory Reich,et al.  Perch Landing Maneuvers for a Rotating Wing MAV , 2010 .

[90]  Hiroyoshi Higuchi,et al.  Hopping and climbing gait of Japanese Pygmy Woodpeckers (Picoides kizuki). , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[91]  Dario Floreano,et al.  Flying Insects and Robots , 2010 .

[92]  Walter Federle,et al.  Why are so many adhesive pads hairy? , 2006, Journal of Experimental Biology.

[93]  Wendy E. Roberts Explosive Breeding Aggregations and Parachuting in a Neotropical Frog, Agalychnis saltator (Hylidae) , 1994 .

[94]  M. A. Minor,et al.  An Avian-Inspired Passive Mechanism for Quadrotor Perching , 2013, IEEE/ASME Transactions on Mechatronics.

[95]  Jeremy M. V. Rayner,et al.  On the Aerodynamics of Animal Flight in Ground Effect , 1991 .

[96]  Bret W Tobalske,et al.  Take-off mechanics in hummingbirds (Trochilidae) , 2004, Journal of Experimental Biology.

[97]  Béla Beke,et al.  The Process of Fine Grinding , 1981 .

[98]  Walter Federle,et al.  Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence , 2008, Journal of Experimental Biology.

[99]  Dario Floreano,et al.  A bioinspired multi-modal flying and walking robot , 2015, Bioinspiration & biomimetics.

[100]  Stanislav N. Gorb,et al.  The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[101]  Arianna Menciassi,et al.  Survey and Introduction to the Focused Section on Bio-Inspired Mechatronics , 2013 .

[102]  Eastman N. Jacobs,et al.  Airfoil section characteristics as affected by variations of the Reynolds number , 1939 .

[103]  Eijiro Takeuchi,et al.  Hovering of MAV by using magnetic adhesion and winch mechanisms , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[104]  B. Tobalske,et al.  Transition from leg to wing forces during take-off in birds , 2012, Journal of Experimental Biology.

[105]  Roger D. Quinn,et al.  A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion , 2009 .

[106]  Mark R. Cutkosky,et al.  Perching failure detection and recovery with onboard sensing , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[107]  Matthew Spenko,et al.  Design and experimental validation of HyTAQ, a Hybrid Terrestrial and Aerial Quadrotor , 2013, 2013 IEEE International Conference on Robotics and Automation.

[108]  P. Galton,et al.  Experimental analysis of perching in the European starling (Sturnus vulgaris: Passeriformes; Passeres), and the automatic perching mechanism of birds. , 2012, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[109]  M Elia,et al.  Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. , 1988, The American journal of clinical nutrition.

[110]  Gabriel D. Weymouth,et al.  Unsteady dynamics of rapid perching manoeuvres , 2015, Journal of Fluid Mechanics.

[111]  Daniel K. Riskin,et al.  How do sucker-footed bats hold on, and why do they roost head-up? , 2009 .

[112]  Dario Floreano,et al.  A flying robot with adaptive morphology for multi-modal locomotion , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[113]  Andrew J Spence,et al.  Ecological and biomechanical insights into the evolution of gliding in mammals. , 2011, Integrative and comparative biology.

[114]  Bruce A. Young,et al.  On a Flap and a Foot: Aerial Locomotion in the “Flying” Gecko, Ptychozoon kuhli , 2002 .

[115]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[116]  Masayuki Inaba,et al.  MUWA: Multi-field universal wheel for air-land vehicle with quad variable-pitch propellers , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[117]  R. Full,et al.  Active tails enhance arboreal acrobatics in geckos , 2008, Proceedings of the National Academy of Sciences.

[118]  Stanislav N. Gorb,et al.  Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny , 2001 .

[119]  Mark R. Cutkosky,et al.  Thrust-Assisted Perching and Climbing for a Bioinspired UAV , 2016, Living Machines.

[120]  Jan-Henning Dirks,et al.  Insect tricks: two-phasic foot pad secretion prevents slipping , 2010, Journal of The Royal Society Interface.

[121]  Rick Lind,et al.  Investigating Sensor Emplacement on Vertical Surfaces for a Biologically-Inspired Morphing Design from Bats , 2007 .

[122]  M. Srinivasan,et al.  The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera , 2010, Journal of Experimental Biology.

[123]  Roger D. Quinn,et al.  A small wall-walking robot with compliant, adhesive feet , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[124]  Z. J. Wang Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight , 2007 .

[125]  T. Eisner,et al.  Defense by foot adhesion in a beetle (Hemisphaerota cyanea). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Kam K. Leang,et al.  Dynamic underactuated flying-walking (DUCK) robot , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[127]  Stephen R. Brown A note on the description of surface roughness using fractal dimension , 1987 .

[128]  Carlo Menon,et al.  Gecko Inspired Surface Climbing Robots , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[129]  Dario Floreano,et al.  A Collision‐resilient Flying Robot , 2014, J. Field Robotics.

[130]  David Lentink,et al.  Biomimetics: Flying like a fly , 2013, Nature.

[131]  Adrian Bowyer,et al.  Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus , 2007, Journal of Experimental Biology.

[132]  Dale L. Marcellini,et al.  Analysis of the gliding behavior of Ptychozoon Lionatum (Reptilia: Gekkonidae) , 1976 .

[133]  Ronald S. Fearing,et al.  Experimental dynamics of wing assisted running for a bipedal ornithopter , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[134]  Stanislav N. Gorb,et al.  Sticky Feet: From Animals to Materials , 2007 .

[135]  A. Hurst,et al.  Localization and perching maneuver tracking for a morphing UAV , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[136]  Mark R. Cutkosky,et al.  Region of attraction estimation for a perching aircraft: A Lyapunov method exploiting barrier certificates , 2012, 2012 IEEE International Conference on Robotics and Automation.

[137]  Mark R. Cutkosky,et al.  Three-dimensional dynamic surface grasping with dry adhesion , 2016, Int. J. Robotics Res..

[138]  Robert J. Wood,et al.  The flying monkey: A mesoscale robot that can run, fly, and grasp , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[139]  Metin Sitti,et al.  Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[140]  Jake J. Abbott,et al.  A Sarrus-Based Passive Mechanism for Rotorcraft Perching , 2016 .

[141]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[142]  Mark R. Cutkosky,et al.  Climbing with adhesion: from bioinspiration to biounderstanding , 2015, Interface Focus.

[143]  R. Norberg,et al.  Optimal locomotion modes of foraging birds in trees , 2008 .

[144]  Mark R. Cutkosky,et al.  Modeling the dynamics of perching with opposed-grip mechanisms , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[145]  H. Wagner Flow-field variables trigger landing in flies , 1982, Nature.

[146]  Matthew Ryan Polakowski,et al.  An Improved Lightweight Micro Scale Vehicle Capable of Aerial and Terrestrial Locomotion , 2012 .

[147]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[148]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[149]  Daniel Mellinger,et al.  Control of Quadrotors for Robust Perching and Landing , 2010 .

[150]  D. N. Lee,et al.  Aerial docking by hummingbirds , 1991, Naturwissenschaften.

[151]  Robert J. Wood,et al.  Perching with a robotic insect using adaptive tracking control and iterative learning control , 2016, Int. J. Robotics Res..

[152]  KHLow,et al.  Perspectives on biologically inspired hybrid and multi-modal locomotion , 2015 .

[153]  Hideyuki Tsukagoshi,et al.  Aerial manipulator with perching and door-opening capability , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[154]  R. Full,et al.  Dynamics of rapid vertical climbing in cockroaches reveals a template , 2006, Journal of Experimental Biology.

[155]  L. Frantsevich,et al.  Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. , 2004, Arthropod structure & development.

[156]  Daniel D. Jensen,et al.  The Sticky-Pad Plane and other Innovative Concepts for Perching UAVs , 2009 .

[157]  S C Burgess,et al.  Multi-modal locomotion: from animal to application , 2013, Bioinspiration & biomimetics.

[158]  Robert Dudley,et al.  Gliding and the Functional Origins of Flight: Biomechanical Novelty or Necessity? , 2007 .

[159]  Ou Ma,et al.  A Bio-inspired Approach for UAV Landing and Perching , 2013 .

[160]  S. Gorb,et al.  Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). , 2002, The Journal of experimental biology.

[161]  Heping Chen,et al.  Unified Switching between Active Flying and Perching of a Bioinspired Robot Using Impedance Control , 2015, J. Robotics.

[162]  M. Cutkosky,et al.  The Gecko’s Toe: Scaling Directional Adhesives for Climbing Applications , 2013, IEEE/ASME Transactions on Mechatronics.

[163]  Hyun Myung,et al.  Development of a drone-type wall-sticking and climbing robot , 2015, 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[164]  Marco Santochi,et al.  Grasping , 2019, CIRP Encyclopedia of Production Engineering.

[165]  Andrew J Spence,et al.  Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus) , 2008, Proceedings of the Royal Society B: Biological Sciences.

[166]  N.A.V. Piercy,et al.  Aerodynamics for Engineers , 1979 .

[167]  R. M. Alexander,et al.  Energy for animal life , 1999 .

[168]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[169]  Gillian L. Currie,et al.  Risk of Bias in Reports of In Vivo Research: A Focus for Improvement , 2015, PLoS biology.

[170]  R. Full,et al.  An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants1 , 2002, Integrative and comparative biology.

[171]  Mark R. Cutkosky,et al.  Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles , 2010, J. Intell. Robotic Syst..

[172]  Gregory W. Reich,et al.  Design and Perching Experiments of Bird-like Remote Controlled Planes , 2013 .

[173]  José Antonio Cruz-Ledesma,et al.  Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle , 2014 .

[174]  R. Norberg,et al.  WHY FORAGING BIRDS IN TREES SHOULD CLIMB AND HOP UPWARDS RATHER THAN DOWNWARDS , 2008 .

[175]  T. Kawamichi,et al.  POSITIONAL BEHAVIOR OF JAPANESE GIANT FLYING SQUIRRELS (PETAURISTA LEUCOGENYS) , 2003 .

[176]  Donald Ruffatto,et al.  Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[177]  John Doyle,et al.  The hardness of wood. , 1980 .

[178]  Oliver Betz,et al.  Structure of the tarsi in some stenus species (coleoptera, staphylinidae): External morphology, ultrastructure, and tarsal secretion , 2003, Journal of morphology.

[179]  Hiroyoshi Higuchi,et al.  Locomotion of the Eurasian nuthatch on vertical and horizontal substrates , 2008 .

[180]  M. Dickinson,et al.  Rotational accelerations stabilize leading edge vortices on revolving fly wings , 2009, Journal of Experimental Biology.

[181]  David Lentink,et al.  Folding in and out: passive morphing in flapping wings , 2015, Bioinspiration & biomimetics.

[182]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[183]  Stephen R. Brown Correction to “A note on the description of surface roughness using fractal dimension” , 1988 .

[184]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[185]  Mark A. Minor,et al.  UAV fall detection from a dynamic perch using Instantaneous Centers of Rotation and inertial sensing , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[186]  K Peterson,et al.  A wing-assisted running robot and implications for avian flight evolution , 2011, Bioinspiration & biomimetics.

[187]  R. J. Templin,et al.  The spectrum of animal flight: insects to pterosaurs , 2000 .

[188]  Mirko Kovac,et al.  Tensile Web Construction and Perching with Nano Aerial Vehicles , 2015, ISRR.

[189]  R. Dudley,et al.  The Cost of Living Large: Comparative Gliding Performance in Flying Lizards (Agamidae: Draco) , 2005, The American Naturalist.

[190]  Ephrahim Garcia,et al.  Controller design for a morphing, perching aircraft , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.