Genome-wide analysis of cytochrome P450s of Trichoderma spp.: annotation and evolutionary relationships

[1]  P. Mukherjee,et al.  The Viridin Biosynthesis Gene Cluster of Trichoderma virens and Its Conservancy in the Bat White‐Nose Fungus Pseudogymnoascus destructans , 2018 .

[2]  V. Olmedo-Monfil,et al.  Functional Characterization of TvCyt2, a Member of the p450 Monooxygenases From Trichoderma virens Relevant During the Association With Plants and Mycoparasitism. , 2017, Molecular plant-microbe interactions : MPMI.

[3]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[4]  D. Nelson,et al.  CYPome of the conifer pathogen Heterobasidion irregulare: Inventory, phylogeny, and transcriptional analysis of the response to biocontrol. , 2017, Fungal biology.

[5]  Xiaofeng Dai,et al.  Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae , 2016, Scientific Reports.

[6]  S. Zeilinger,et al.  Secondary metabolism in Trichoderma – Chemistry meets genomics , 2016 .

[7]  P. Mukherjee,et al.  Identification of novel gene clusters for secondary metabolism in Trichoderma genomes , 2016, Microbiology.

[8]  P. Mukherjee,et al.  The Terpenoid Biosynthesis Toolkit of Trichoderma , 2016, Natural product communications.

[9]  S. Baker,et al.  The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species , 2016, Microbiology and Molecular Reviews.

[10]  W. Gams,et al.  Accepted Trichoderma names in the year 2015 , 2015, IMA fungus.

[11]  Anders Larsson,et al.  AliView: a fast and lightweight alignment viewer and editor for large datasets , 2014, Bioinform..

[12]  Fusheng Chen,et al.  Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin , 2014, Genome biology and evolution.

[13]  K. Akimitsu,et al.  Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. , 2014, The New phytologist.

[14]  K. Syed,et al.  Comparative Analysis of P450 Signature Motifs EXXR and CXG in the Large and Diverse Kingdom of Fungi: Identification of Evolutionarily Conserved Amino Acid Patterns Characteristic of P450 Family , 2014, PloS one.

[15]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[16]  J. Yadav,et al.  A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium. , 2013, Journal of hazardous materials.

[17]  Jing Dong,et al.  Metabolism of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition. , 2013, Chemosphere.

[18]  M. Schmoll,et al.  Trichoderma research in the genome era. , 2013, Annual review of phytopathology.

[19]  S. Kelly,et al.  Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. , 2013, The New phytologist.

[20]  H. Sezutsu,et al.  Origins of P450 diversity , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  D. Kelly,et al.  Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  Jongsun Park,et al.  Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes , 2012, BMC Genomics.

[23]  J. Yadav,et al.  P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium , 2012, Critical reviews in microbiology.

[24]  R. Becher,et al.  Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens , 2012, Applied Microbiology and Biotechnology.

[25]  S. Gutiérrez,et al.  Involvement of Trichoderma Trichothecenes in the Biocontrol Activity and Induction of Plant Defense-Related Genes , 2012, Applied and Environmental Microbiology.

[26]  I. Grigoriev,et al.  Trichoderma: the genomics of opportunistic success , 2011, Nature Reviews Microbiology.

[27]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[28]  A. Salamov,et al.  Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma , 2011, Genome Biology.

[29]  D. Nelson,et al.  A P450-centric view of plant evolution. , 2011, The Plant journal : for cell and molecular biology.

[30]  Guo-Ping Zhao,et al.  Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum , 2011, PLoS genetics.

[31]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[32]  F. Wagner,et al.  Prediction and analysis of the modular structure of cytochrome P450 monooxygenases , 2010, BMC Structural Biology.

[33]  D. Nelson The Cytochrome P450 Homepage , 2009, Human Genomics.

[34]  Sunghwan Sohn,et al.  Abbreviation definition identification based on automatic precision estimates , 2008, BMC Bioinformatics.

[35]  Bongsoo Park,et al.  Fungal cytochrome P450 database , 2008, BMC Genomics.

[36]  D. Kelly,et al.  CYP56 (Dit2p) in Candida albicans: Characterization and Investigation of Its Role in Growth and Antifungal Drug Susceptibility , 2008, Antimicrobial Agents and Chemotherapy.

[37]  Magnus Rattray,et al.  Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis , 2008, PloS one.

[38]  Jinah Park,et al.  Monitoring the evolutionary aspect of the Gene Ontology to enhance predictability and usability , 2008, BMC Bioinformatics.

[39]  Irina S Druzhinina,et al.  Genetically Closely Related but Phenotypically Divergent Trichoderma Species Cause Green Mold Disease in Oyster Mushroom Farms Worldwide , 2007, Applied and Environmental Microbiology.

[40]  D. Hoffmeister,et al.  Natural products of filamentous fungi: enzymes, genes, and their regulation. , 2007, Natural product reports.

[41]  R. Dean,et al.  The evolutionary history of Cytochrome P450 genes in four filamentous Ascomycetes , 2007, BMC Evolutionary Biology.

[42]  Mutsumi Nishida,et al.  Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes , 2007, BMC Evolutionary Biology.

[43]  Vlada B Urlacher,et al.  Cytochrome P450 monooxygenases: perspectives for synthetic application. , 2006, Trends in biotechnology.

[44]  R. Bernhardt,et al.  Cytochromes P450 as versatile biocatalysts. , 2006, Journal of biotechnology.

[45]  J. Bennett,et al.  Fungal secondary metabolism — from biochemistry to genomics , 2005, Nature Reviews Microbiology.

[46]  Lei Shen,et al.  Combining phylogenetic motif discovery and motif clustering to predict co-regulated genes , 2005, Bioinform..

[47]  V. Siewers,et al.  Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. , 2005, Molecular plant-microbe interactions : MPMI.

[48]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[49]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[50]  S. Kajiwara,et al.  Catalytic Reaction of Basidiomycete Lentinula edodes Cytochrome P450, Le.CYP1 Enzyme Produced in Yeast , 2004, Bioscience, biotechnology, and biochemistry.

[51]  C. R. Wilson,et al.  Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis , 2003, Applied and Environmental Microbiology.

[52]  R. Proctor,et al.  Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. , 2002, Fungal genetics and biology : FG & B.

[53]  H. Wariishi,et al.  Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor , 2002, Applied Microbiology and Biotechnology.

[54]  Colin J Jackson,et al.  The Cytochrome P450 Complement (CYPome) of Streptomyces coelicolor A3(2)* , 2002, The Journal of Biological Chemistry.

[55]  K. O’Donnell,et al.  Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Kistler,et al.  Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. , 2001, The Plant journal : for cell and molecular biology.

[57]  H. Shoun,et al.  Fusarium oxysporum Fatty-acid Subterminal Hydroxylase (CYP505) Is a Membrane-bound Eukaryotic Counterpart of Bacillus megaterium Cytochrome P450BM3* , 2000, The Journal of Biological Chemistry.

[58]  D. Werck-Reichhart,et al.  Cytochromes P450: a success story , 2000, Genome Biology.

[59]  M. Nei,et al.  Molecular Evolution and Phylogenetics , 2000 .

[60]  D. Nelson,et al.  Cytochrome P450 and the individuality of species. , 1999, Archives of biochemistry and biophysics.

[61]  D. Nelson Metazoan cytochrome P450 evolution. , 1998, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[62]  M. Bard,et al.  Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. , 1996, Gene.

[63]  D W Nebert,et al.  P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. , 1996, Pharmacogenetics.

[64]  K. Degtyarenko Structural domains of P450-containing monooxygenase systems. , 1995, Protein engineering.

[65]  P. Briza,et al.  The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Nei,et al.  A Simple Method for Estimating and Testing Minimum-Evolution Trees , 1992 .

[67]  O. Gotoh,et al.  Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. , 1992, The Journal of biological chemistry.

[68]  O. Gotoh,et al.  Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. , 1991, The Journal of biological chemistry.

[69]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[70]  D W Nebert,et al.  The P450 gene superfamily: recommended nomenclature. , 1987, DNA.

[71]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[72]  K. Syed,et al.  Comparative Analysis of P 450 Signature Motifs EXXR and CXG in the Large and Diverse Kingdom of Fungi : Identification of Evolutionarily Conserved Amino Acid Patterns Characteristic of P 450 Family , 2014 .

[73]  H. Ichinose Metabolic Diversity and Cytochromes P450 of Fungi , 2014 .

[74]  Jing Dong,et al.  Hydroxylation of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition. , 2013, Chemosphere.

[75]  H. Ichinose Cytochrome P450 of wood‐rotting basidiomycetes and biotechnological applications , 2013, Biotechnology and applied biochemistry.

[76]  J. Bohlmann,et al.  The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. , 2013, Fungal genetics and biology : FG & B.

[77]  M. Schmoll,et al.  Trichoderma in agriculture, industry and medicine: an overview. , 2013 .

[78]  M. Schmoll,et al.  Trichoderma in plant health management. , 2013 .

[79]  M. Schmoll,et al.  Trichoderma as a human pathogen. , 2013 .

[80]  M. Schmoll,et al.  The endophytic Trichoderma. , 2013 .

[81]  D. Kelly,et al.  The cytochrome P450 complement (CYPome) of Mycosphaerella graminicola , 2013, Biotechnology and applied biochemistry.

[82]  Monika Schmoll,et al.  Trichoderma: biology and applications. , 2013 .

[83]  B Crešnar,et al.  Cytochrome P450 enzymes in the fungal kingdom. , 2011, Biochimica et biophysica acta.

[84]  D. Kelly,et al.  The CYPome (Cytochrome P450 complement) of Aspergillus nidulans. , 2009, Fungal genetics and biology : FG & B.

[85]  Bernard Henrissat,et al.  Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[86]  M. Klingenberg Pigments of rat liver microsomes. , 2003, Archives of biochemistry and biophysics.

[87]  Michael Y. Galperin,et al.  Comparative genome analysis. , 2001, Methods of biochemical analysis.

[88]  Benveniste,et al.  Cytochrome P450 , 1993, Handbook of Experimental Pharmacology.

[89]  L. Pauling,et al.  Evolutionary Divergence and Convergence in Proteins , 1965 .