Curb Your Normality: On the Quality Requirements of Demand Prediction for Dynamic Public Transport

[1]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[2]  Clive W. J. Granger,et al.  Experience with using the Box-Cox transformation when forecasting economic time series , 1979 .

[3]  Trevor A Spedding,et al.  AUTOREGRESSIVE MOVING AVERAGE PROCESSES WITH NON‐NORMAL RESIDUALS , 1980 .

[4]  Gerrit Kateman,et al.  The performance of least squares and robust regression in the calibration of analytical methods under non‐normal noise distributions , 1989 .

[5]  Tak K. Mak,et al.  Heteroscedastic regression models with non-normally distributed errors , 2000 .

[6]  H. Thode Testing For Normality , 2002 .

[7]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[8]  W. Greene,et al.  Censored Data and Truncated Distributions , 2005 .

[9]  Andrew McCulloch,et al.  Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models , 2005 .

[10]  Young-Jae Lee,et al.  Transit network sensitivity analysis , 2006 .

[11]  Satish V. Ukkusuri,et al.  Robust Transportation Network Design Under Demand Uncertainty , 2007, Comput. Aided Civ. Infrastructure Eng..

[12]  Trivellore E. Raghunathan,et al.  On the Performance of Sequential Regression Multiple Imputation Methods with Non Normal Error Distributions , 2009, Commun. Stat. Simul. Comput..

[13]  Hong Kam Lo,et al.  Global Optimum of the Linearized Network Design Problem with Equilibrium Flows , 2010 .

[14]  H. Lo,et al.  Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach , 2011 .

[15]  Milind Kandlikar,et al.  Using Expert Judgment for Risk Assessment , 2011 .

[16]  Avishai Ceder,et al.  Transit-network design methodology for actual-size road networks , 2011 .

[17]  Kun An,et al.  Robust Transit Network Design with Stochastic Demand Considering Development Density , 2013 .

[18]  W. Y. Szeto,et al.  Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach , 2014 .

[19]  Luigi dell’Olio,et al.  Bus Size and Headways Optimization Model Considering Elastic Demand , 2014 .

[20]  Marta C. González,et al.  The path most traveled: Travel demand estimation using big data resources , 2015, Transportation Research Part C: Emerging Technologies.

[21]  Harvey J. Miller,et al.  Transportation network design for maximizing space–time accessibility , 2015 .

[22]  Avishai Ceder,et al.  Public Transit Planning and Operation: Modeling, Practice and Behavior , 2015 .

[23]  Khaled Abdelghany,et al.  Real-Time Traffic Network State Prediction for Proactive Traffic Management , 2015 .

[24]  William H. K. Lam,et al.  Sustainable Transportation Network Design with Stochastic Demands and Chance Constraints , 2015 .

[25]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[26]  Felix Becker,et al.  Cost-based analysis of autonomous mobility services , 2017 .

[27]  Kay W. Axhausen,et al.  Cost-based analysis of autonomous mobility services , 2017 .

[28]  Javier Alonso-Mora,et al.  Predictive routing for autonomous mobility-on-demand systems with ride-sharing , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[29]  Miroslav Svítek,et al.  Data-driven management of dynamic public transport , 2018, 2018 Smart City Symposium Prague (SCSP).

[30]  Dan Jackson,et al.  When should meta‐analysis avoid making hidden normality assumptions? , 2018, Biometrical journal. Biometrische Zeitschrift.

[31]  Xiaoqiang Wang,et al.  Application of optimized genetic algorithm based on big data in bus dynamic scheduling , 2018, Cluster Computing.

[32]  Bart van Arem,et al.  Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service , 2018, International Journal of Transportation Science and Technology.

[33]  Michael Hyland,et al.  Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests , 2018, Transportation Research Part C: Emerging Technologies.

[34]  Jeppe Rich,et al.  Is the value of travel time savings increasing? Analysis throughout a financial crisis , 2019, Transportation Research Part A: Policy and Practice.

[35]  Konstantinos Kepaptsoglou,et al.  Combining ITS and optimization in public transportation planning: state of the art and future research paths , 2019, European Transport Research Review.

[36]  Justin Dauwels,et al.  Preserving Uncertainty in Demand Prediction for Autonomous Mobility Services , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[37]  Tomer Toledo,et al.  Optimization-based operations control for public transportation service with transfers , 2019, Transportation Research Part C: Emerging Technologies.

[38]  Oded Cats,et al.  A data driven method for OD matrix estimation , 2020, Transportation Research Part C: Emerging Technologies.

[39]  Francisco C. Pereira,et al.  Estimating Latent Demand of Shared Mobility through Censored Gaussian Processes , 2020, Transportation Research Part C: Emerging Technologies.

[40]  Ivana Ivković,et al.  Coverage probabilities of confidence intervals for the slope parameter of linear regression model when the error term is not normally distributed , 2018, Commun. Stat. Simul. Comput..

[41]  Amirreza Nickkar,et al.  Sensitivity Analysis for the Optimal Automated Demand Responsive Feeder Transit System , 2020 .

[42]  A data driven method for OD matrix estimation , 2020, Transportation Research Part C: Emerging Technologies.

[43]  Bing Huang,et al.  Impact of non-normal error distributions on the benchmarking and ranking of quantum machine learning models , 2020, Mach. Learn. Sci. Technol..

[44]  A. Huang,et al.  Flexible Route Optimization for Demand-Responsive Public Transit Service , 2020 .

[45]  Yu Jiang,et al.  Incorporating personalization and bounded rationality into stochastic transit assignment model , 2021 .

[46]  Marco Mamei,et al.  A Data Driven Approach to Match Demand and Supply for Public Transport Planning , 2021, IEEE Transactions on Intelligent Transportation Systems.

[47]  Yu Jiang,et al.  Reliability-based equitable transit frequency design , 2021, Transportmetrica A: Transport Science.