Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results

Abstract Carbon molecular sieves (CMSs) have been incorporated into two different polymer matrices to form mixed matrix membrane films for gas separations. The CMSs were formed by pyrolysis of a polyimide (Matrimid ® ) precursor to a final temperature of 800 °C. The CMS membrane films have an intrinsic CO 2 /CH 4 selectivity of 200 with a CO 2 permeability of 44 Barrers and an O 2 /N 2 selectivity of 13.3 with an O 2 permeability of 24 Barrers at 35 °C. The pyrolyzed CMS materials were ball-milled into fine particles, ranging in size from submicron to 2 μm, prior to dispersal in casting solvent. Mixed matrix films comprising high CMS particle loadings (up to 35 wt.%) dispersed within two polymer matrices (Matrimid ® 5218 and Ultem ® 1000) were successfully formed from flat-sheet solution casting. For Ultem ® –CMS mixed matrix membrane films, pure gas permeation tests show enhancements by as much as 40% in CO 2 /CH 4 selectivity over the intrinsic CO 2 /CH 4 selectivity of the pure Ultem ® polymer matrix. Likewise, for Matrimid ® –CMS mixed matrix films, enhancements by as much as 45% in CO 2 /CH 4 selectivity were observed. Similar enhancements were observed when these mixed matrix membrane films were examined for the O 2 /N 2 separation (8 and 20% for the Ultem ® –CMS and Matrimid ® –CMS mixed matrix films, respectively). Effective permeabilities of the fast-gas penetrants (O 2 and CO 2 ) through the mixed matrix membranes were also significantly enhanced over the intrinsic permeabilities of the Ultem ® and Matrimid ® polymer matrices. These encouraging selectivity and permeability enhancements confirm that mixed matrix membrane behavior is achievable with CMS particles.

[1]  C. A. Smolders,et al.  Preparation of zeolite filled glassy polymer membranes , 1994 .

[2]  L. Yılmaz,et al.  DEVELOPMENT OF A MIXED-MATRIX MEMBRANE FOR PERVAPORATION , 1994 .

[3]  Robert B. Moore,et al.  A new multiplet-cluster model for the morphology of random ionomers , 1990 .

[4]  D. G. Pye,et al.  Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus , 1976 .

[5]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[6]  R. W. Spillman,et al.  Economics of gas separation membranes , 1989 .

[7]  C. A. Smolders,et al.  Zeolite-filled silicone rubber membranes : Part 1. Membrane preparation and pervaporation results , 1987 .

[8]  K. Friedrich,et al.  Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites , 2001 .

[9]  William J. Koros,et al.  Membrane-based gas separation , 1993 .

[10]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[11]  William J. Koros,et al.  High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fiber Membranes , 2002 .

[12]  R. Lichtenthaler,et al.  Sorption isotherms of alcohols in zeolite-filled silicone rubber and in PVA-composite membranes , 1992 .

[13]  H. Suda,et al.  Carbon Molecular Sieve Membranes: Preparation, Characterization, and Gas Permeation Properties , 1999 .

[14]  W. Koros,et al.  Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors , 1994 .

[15]  S. Sikdar,et al.  Sorption, diffusion and permeation of 1,1,1-trichloroethane through adsorbent-filled polymeric membranes☆ , 1995 .

[16]  Jürgen Caro,et al.  Zeolite membranes – state of their development and perspective , 2000 .

[17]  T. M. Gür Permselectivity of zeolite filled polysulfone gas separation membranes , 1994 .

[18]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[19]  W. Koros,et al.  Significance of entropic selectivity for advanced gas separation membranes , 1996 .

[20]  C. A. Smolders,et al.  Zeolite-filled silicone rubber membranes Experimental determination of concentration profiles , 1994 .

[21]  C. A. Smolders,et al.  Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents , 1993 .

[22]  K. Peinemann,et al.  Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation , 1991 .

[23]  F. E. Karasz,et al.  Thermal and rheological properties of miscible polyethersulfone/polyimide blends , 1992 .

[24]  S. Nunes,et al.  Silicone membranes with silica nanoparticles , 1996 .

[25]  S. Sikdar,et al.  Pervaporation Using Adsorbent-Filled Membranes , 1996 .

[26]  D. Kemp,et al.  The diffusion time lag in polymer membranes containing adsorptive fillers , 2007 .

[27]  D. G. Pye,et al.  Measurement of gas permeability of polymers. II. Apparatus for determination of permeabilities of mixed gases and vapors , 1976 .

[28]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[29]  I. Vankelecom,et al.  INCORPORATION OF ZEOLITES IN POLYIMIDE MEMBRANES , 1995 .

[30]  W. Koros,et al.  Controlled Permeability Polymer Membranes , 1992 .

[31]  W. Koros,et al.  Material selection considerations for gas separation processes , 1987 .

[32]  I. Vankelecom,et al.  Sorption and Pervaporation of Aroma Compounds Using Zeolite-Filled PDMS Membranes , 1997 .

[33]  R. Behling,et al.  Preparation and characterization of thin-film zeolite–PDMS composite membranes☆ , 1992 .

[34]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[35]  J. P. Boom,et al.  Transport through zeolite filled polymeric membranes , 1998 .

[36]  R. Mahajan,et al.  Pushing the limits on possibilities for large scale gas separation: which strategies? , 2000 .

[37]  Ivo F. J. Vankelecom,et al.  Parameters Influencing Zeolite Incorporation in PDMS Membranes , 1994 .

[38]  C. Vandecasteele,et al.  Zeolite-filled PDMS membranes .1. Sorption of halogenated hydrocarbons , 1997 .

[39]  R. Thompson,et al.  Incorporation of zeolites into composite matrices , 2000 .

[40]  W. Koros,et al.  Diffusion in gas separation membrane materials: A comparison and analysis of experimental characterization techniques , 1998 .

[41]  S. A. Stern,et al.  Polymers for gas separations: the next decade , 1994 .

[42]  I. Vankelecom,et al.  Silylation To Improve Incorporation of Zeolites in Polyimide Films , 1996 .

[43]  Ivo F. J. Vankelecom,et al.  INFLUENCE OF ZEOLITES IN PDMS MEMBRANES - PERVAPORATION OF WATER/ALCOHOL MIXTURES , 1995 .

[44]  W. Koros,et al.  A new technique for the measurement of multicomponent gas transport through polymeric films , 1986 .

[45]  C. A. Smolders,et al.  EXCLUSION AND TORTUOSITY EFFECTS FOR ALCOHOL/WATER SEPARATION BY ZEOLITE-FILLED PDMS MEMBRANES , 1991 .

[46]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[47]  Geert Versteeg,et al.  High-temperature membrane reactors: potential and problems , 1999 .

[48]  William A. Goddard,et al.  Nature of the chemical bond , 1986 .

[49]  Robert Simha,et al.  On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers , 1962 .

[50]  L. Yılmaz,et al.  Gas permeation characteristics of polymer-zeolite mixed matrix membranes , 1994 .

[51]  K. Kusakabe,et al.  Microporous Inorganic Membranes for Gas Separation , 1999 .

[52]  S. Nunes,et al.  Membranes of poly(ether imide) and nanodispersed silica , 1999 .

[53]  W. Koros,et al.  Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties , 1996 .