Multilabel classification with meta-level features in a learning-to-rank framework

[1]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[2]  Tao Qin,et al.  LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.

[3]  Yiming Yang,et al.  Multilabel classification with meta-level features , 2010, SIGIR.

[4]  Eyke Hüllermeier,et al.  Combining instance-based learning and logistic regression for multilabel classification , 2009, Machine Learning.

[5]  Pinar Donmez,et al.  On the local optimality of LambdaRank , 2009, SIGIR.

[6]  Qiang Wu,et al.  McRank: Learning to Rank Using Multiple Classification and Gradient Boosting , 2007, NIPS.

[7]  Filip Radlinski,et al.  A support vector method for optimizing average precision , 2007, SIGIR.

[8]  Tao Qin,et al.  FRank: a ranking method with fidelity loss , 2007, SIGIR.

[9]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[10]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[11]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[12]  Andrew McCallum,et al.  Piecewise pseudolikelihood for efficient training of conditional random fields , 2007, ICML '07.

[13]  Quoc V. Le,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, NIPS.

[14]  J. Demšar Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[15]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[16]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[17]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[18]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[19]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[20]  Yiming Yang,et al.  A study of thresholding strategies for text categorization , 2001, SIGIR '01.

[21]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[22]  Ellen M. Voorhees,et al.  The Text REtrieval Conference (TREC-2001) (10th, Gaithersburg, Maryland, November 13-16, 2001). NIST Special Publication. , 2000 .

[23]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[24]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[25]  Yiming Yang,et al.  An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.

[26]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[27]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[28]  Joseph Picone,et al.  Support vector machines for speech recognition , 1998, ICSLP.

[29]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[30]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[31]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[32]  Jon M. Kleinberg,et al.  Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.

[33]  James P. Callan,et al.  Training algorithms for linear text classifiers , 1996, SIGIR '96.

[34]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[35]  Yiming Yang,et al.  Expert network: effective and efficient learning from human decisions in text categorization and retrieval , 1994, SIGIR '94.

[36]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[37]  David L. Waltz,et al.  Trading MIPS and memory for knowledge engineering , 1992, CACM.

[38]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[39]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[40]  Ellen M. Voorhees,et al.  Overview of TREC 2003 , 2003, TREC.

[41]  Jason Weston,et al.  Kernel methods for Multi-labelled classification and Categ orical regression problems , 2001, NIPS 2001.

[42]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[43]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[44]  Peter N. Yianilos,et al.  Data structures and algorithms for nearest neighbor search in general metric spaces , 1993, SODA '93.