Statistical and neural network assessment of the compression index of clay-bearing soils

The compression index is used to estimate the consolidation settlement of clay-bearing soils. As the determination of compression index from oedometer tests is relatively time-consuming, empirical equations based on index properties can be useful. In this study the performance of widely used single and multi-variable empirical equations was evaluated using a database consisting of 135 test data. New empirical equations were developed utilizing least square regression analysis. In addition, an artificial neural network (ANN) with eight input variables was also developed to estimate the compression index. It was concluded that ANN provides the best results.RésuméL’indice de compression est utilisé pour estimer le tassement de consolidation des sols argileux. Comme la détermination de cet indice à partir des essais oedométriques prend quelque temps, des équations empiriques basées sur des indices géotechniques peuvent être utiles. Dans cette étude, l’intérêt d’équations empiriques à une ou plusieurs variables a été évalué à partir d’une base de données comportant 135 résultats d’essais. De nouvelles équations empiriques ont été développées à partir d’une analyse de régression par la méthode des moindres carrés. De plus, un réseau de neurones artificiel (ANN) avec huit variables d’entrée a été développé pour estimer l’indice de compression. La conclusion est que l’ANN donne les meilleurs résultats.

[1]  T. S. Nagaraj,et al.  Prediction of the preconsolidation pressure and recompression index of soils , 1985 .

[2]  Oswald Rendon-Herrero,et al.  Universal Compression Index Equation , 1980 .

[3]  Alec Westley Skempton,et al.  Notes on the compressibility of clays , 1944, Quarterly Journal of the Geological Society of London.

[4]  J. E. Bowles Physical and geotechnical properties of soils , 1979 .

[5]  Joseph E. Bowles,et al.  Foundation analysis and design , 1968 .

[6]  I. Yilmaz Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity , 2006 .

[7]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[8]  B. K. Hough,et al.  Basic soils engineering , 1966 .

[9]  W. D. Carrier Consolidation parameters derived from index tests , 1985 .

[10]  John H. Schertmann,et al.  Estimating the True Consolidation Behavior of Clay from Laboratory Test Results , 1953 .

[11]  George Bloomer Sowers,et al.  Introductory soil mechanics and foundations , 1961 .

[12]  Sd Koppula,et al.  STATISTICAL ESTIMATION OF COMPRESSION INDEX , 1981 .

[13]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[14]  Yike Guo,et al.  A rule based fuzzy model for the prediction of petrophysical rock parameters , 2001 .

[15]  K. Terzaghi,et al.  Soil mechanics in engineering practice , 1948 .

[16]  K. V. Helenelund On Consolidation and Settlement of Loaded Soil Layers , 1952 .

[17]  Asuri Sridharan,et al.  Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties , 2001 .

[18]  Holger R. Maier,et al.  PREDICTING SETTLEMENT OF SHALLOW FOUNDATIONS USING NEURAL NETWORKS , 2002 .

[19]  Jian-Hua Yin,et al.  Properties and behaviour of Hong Kong marine deposits with different clay contents , 1999 .

[20]  P W Mayhe,et al.  CAM-CLAYS PREDICTIONS OF UNDRAINED STRENGTH , 1980 .

[21]  Janet M. Twomey,et al.  Validation and Verification , 1997 .

[22]  Oswald Rendon‐Herrero,et al.  Closure to “ Universal Compression Index Equation ” by Oswald Rendon‐Herrero (November, 1980) , 1983 .

[23]  Claudia Cherubini,et al.  Evaluation of compression index of remoulded clays by means of Atterberg limits , 2003 .

[24]  D. M. Wood,et al.  THE CORRELATION OF INDEX PROPERTIES WITH SOME BASIC ENGINEERING PROPERTIES OF SOILS , 1978 .

[25]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[26]  Candan Gokceoglu,et al.  A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition , 2002 .

[27]  Robert Babuška,et al.  Fuzzy model for the prediction of unconfined compressive strength of rock samples , 1999 .

[28]  Byung Tak Kim,et al.  Empirical correlations of compression index for marine clay from regression analysis , 2004 .

[29]  Rashmi Malhotra A Multifold Comparison of Statistical and Neural Network Models to Evaluate Consumer Loan Application. , 1998 .

[30]  B. R. Srinivasa Murthy,et al.  A critical reappraisal of compression index equations , 1986 .

[31]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[32]  Y. Nishida,et al.  A Brief Note on Compression Index of Soil , 1956 .

[33]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[34]  Amir W. Al-Khafaji,et al.  EQUATIONS FOR COMPRESSION INDEX APPROXIMATION , 1992 .

[35]  Ross B. Corotis,et al.  REGRESSION ANALYSIS OF SOIL COMPRESSIBILITY , 1976 .

[36]  Osamu Kusakabe,et al.  Constitutive Parameters Estimated by Plasticity Index , 1988 .