Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules

[1]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[2]  K. Potje-Kamloth,et al.  Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell , 1998 .

[3]  P. Fedkiw,et al.  Nafion®-based composite polymer electrolyte membranes , 1998 .

[4]  Jesse S. Wainright,et al.  High pressure electrical conductivity studies of acid doped polybenzimidazole , 1998 .

[5]  Laurent Depre,et al.  Inorganic-organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods , 1998 .

[6]  L. Nazar,et al.  Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries , 1998 .

[7]  J. Maier,et al.  Imidazole and pyrazole-based proton conducting polymers and liquids , 1998 .

[8]  S. Greenbaum,et al.  Electrical Conductivity and NMR Studies of Methanol/Water Mixtures in Nafion Membranes. , 1998 .

[9]  G. Lavrova,et al.  Influence of dispersed TiO2 on protonic conductivity of CsHSO4 , 1998 .

[10]  Takeshi Kobayashi,et al.  Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene) , 1998 .

[11]  P. Staiti,et al.  Fuel cells with H3PW12O40 · 29H2O as solid electrolyte , 1997 .

[12]  A. Azens,et al.  Proton conducting composite electrolytes based on antimonic acid , 1997 .

[13]  D. Ostrovskii,et al.  Water sorption properties of and the state of water in PVDF-based proton conducting membranes , 1997 .

[14]  G. Scherer Interfacial aspects in the development of polymer electrolyte fuel cells , 1997 .

[15]  A. Aricò,et al.  High performance fuel cell based on phosphotungstic acid as proton conducting electrolyte , 1996 .

[16]  H. Iwahara,et al.  Technological challenges in the application of proton conducting ceramics , 1995 .

[17]  Takashi Hibino,et al.  Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe[sub 1 [minus] x]Sm[sub x]O[sub 3 [minus] [alpha]] , 1993 .

[18]  B. Gupta,et al.  Materials research aspects of organic solid proton conductors , 1993 .

[19]  W. Wieczorek,et al.  Proton polymeric electrolytes—a review , 1991 .

[20]  H. Iwahara,et al.  High Temperature Solid Electrolyte Fuel Cells Using Perovskite‐Type Oxide Based on BaCeO3 , 1990 .

[21]  G. Wilkes,et al.  Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide) , 1989 .

[22]  B. Desbat,et al.  From model solid-state protonic conductors to new polymer electrolytes , 1989 .

[23]  T. Scherban Bulk protonic conduction in Yb-doped SrCeO3 , 1989 .

[24]  M. Armand,et al.  AMINOSILS: New solid state protonic materials by the sol-gel process , 1988 .

[25]  M. Vincens,et al.  A new family of organically modified silicates prepared from gels , 1986 .

[26]  D. Desmarteau,et al.  Proton Conductivity in Nafion® 117 and in a Novel Bis[(perfluoroalkyl)sulfonyl]imide Ionomer Membrane , 1998 .

[27]  A. Aricò,et al.  Analysis of the chemical cross-over in a phosphotungstic acid electrolyte based fuel cell , 1997 .

[28]  M. Popall,et al.  Inorganic—organic copolymers as solid state Li+ electrolytes , 1992 .

[29]  I. Gautier-Luneau,et al.  Organic—inorganic protonic polymer electrolytes as membrane for low-temperature fuel cell , 1992 .