Floquet topological insulator in semiconductor quantum wells

Topological phases of matter have captured our imagination over the past few years, with tantalizing properties such as robust edge modes and exotic non-Abelian excitations, and potential applications ranging from semiconductor spintronics to topological quantum computation. Despite recent advancements in the field, our ability to control topological transitions remains limited, and usually requires changing material or structural properties. We show, using Floquet theory, that a topological state can be induced in a semiconductor quantum well, initially in the trivial phase. This can be achieved by irradiation with microwave frequencies, without changing the well structure, closing the gap and crossing the phase transition. We show that the quasi-energy spectrum exhibits a single pair of helical edge states. We discuss the necessary experimental parameters for our proposal. This proposal provides an example and a proof of principle of a new non-equilibrium topological state, the Floquet topological insulator, introduced in this paper.

[1]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[2]  A. Mirlin,et al.  Theory of microwave-induced oscillations in the magnetoconductivity of a two-dimensional electron gas , 2004, cond-mat/0409590.

[3]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[4]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[5]  Hideo Aoki,et al.  Photovoltaic Hall effect in graphene , 2008, 0807.4767.

[6]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[7]  V. Galitski,et al.  Nonequilibrium enhancement of Cooper pairing in cold fermion systems , 2009, 0905.0912.

[8]  A. Auerbach,et al.  Nonlinear current of strongly irradiated quantum Hall gas , 2006, cond-mat/0612469.

[9]  Akihiro Tanaka,et al.  Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. , 2010, Physical review letters.

[10]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[11]  W. B. Johnson,et al.  Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures , 2002, Nature.

[12]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[13]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[14]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[15]  Xi Dai,et al.  Topological insulators in Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface , 2009 .

[16]  G. M. Éliashberg,et al.  Film Superconductivity Stimulated by a High-frequency Field , 1970 .

[17]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[18]  Takuya Kitagawa,et al.  Topological Characterization of Periodically-Driven Quantum Systems , 2010, 1010.6126.

[19]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[20]  L. Molenkamp,et al.  Fingerprint of different spin–orbit terms for spin transport in HgTe quantum wells , 2010, 1002.2904.

[21]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[22]  Christensen,et al.  Spin-orbit coupling parameters and electron g factor of II-VI zinc-blende materials. , 1995, Physical review. B, Condensed matter.

[23]  L. Fu,et al.  Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator , 2009 .

[24]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[25]  L. Molenkamp,et al.  Band structure of semimagnetic Hg 1 − y Mn y Te quantum wells , 2004, cond-mat/0409392.

[26]  C. Becker,et al.  Effective g factor of n-type HgTe'Hg 1¿x Cd x Te single quantum wells , 2004 .

[27]  S. Sarma,et al.  Topological insulators and metals in atomic optical lattices , 2009, 0901.3921.

[28]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[29]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[30]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[31]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[32]  M. Lukin,et al.  Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical review letters.

[33]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.