Spatial Index Structures for Modern Storage Devices: A Survey

To optimize the processing of spatial queries, there is an increasing interest in combining spatial index structures with modern storage devices like flash-based Solid State Drives, PCM, and 3D Xpoint. These devices have several advantages compared to classical Hard Disk Drives, such as lower power consumption, and faster reads and writes. However, modern storage devices have changed the paradigm of data management because of their intrinsic characteristics, such as asymmetric read and write costs. Intending to exploit the benefits of modern storage devices, the development of spatial index structures for these devices has been an emerging research topic with recent and constant advances in the literature. This includes the adaptation of existing spatial index structures like the R-tree, or even the design of innovative structures. In this article, we present a comprehensive survey that highlights the key ideas, compares the main characteristics, and discusses the advantages and disadvantages of spatial index structures for modern storage devices. Further, we study how experimental evaluations have been conducted to empirically compare these structures. Finally, we discuss challenges and identify potential future trends when indexing spatial data in this era of modern storage devices.

[1]  Rafael Alves Paes de Oliveira,et al.  A Systematic Review of Spatial Approximations in Spatial Database Systems , 2022, J. Inf. Data Manag..

[2]  A. Corral,et al.  Porting disk-based spatial index structures to flash-based solid state drives , 2021, GeoInformatica.

[3]  Markus Schneider,et al.  A Survey of Fuzzy Approaches in Spatial Data Science , 2021, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[4]  Athanasios Fevgas,et al.  HyR-tree: a spatial index for hybrid flash/3D XPoint storage , 2021, Neural Computing and Applications.

[5]  João Pedro Castro,et al.  Analyzing spatial analytics systems based on Hadoop and Spark: A user perspective , 2020, Softw. Pract. Exp..

[6]  David J. Lilja,et al.  Exploring Performance Characteristics of the Optane 3D Xpoint Storage Technology , 2020, ACM Trans. Model. Perform. Evaluation Comput. Syst..

[7]  Jignesh M. Patel,et al.  Optimizing Databases by Learning Hidden Parameters of Solid State Drives , 2019, Proc. VLDB Endow..

[8]  Athanasios Fevgas,et al.  Parallel processing of spatial batch-queries using xBR+-trees in solid-state drives , 2019, Clust. Comput..

[9]  Cristina Dutra de Aguiar Ciferri,et al.  FESTIval: A versatile framework for conducting experimental evaluations of spatial indices , 2019, MethodsX.

[10]  Lei Chen,et al.  Spatial crowdsourcing: a survey , 2019, The VLDB Journal.

[11]  Nikos Mamoulis,et al.  Spatial joins: what's next? , 2019, SIGSPACIAL.

[12]  Panayiotis Bozanis,et al.  Indexing in flash storage devices: a survey on challenges, current approaches, and future trends , 2019, The VLDB Journal.

[13]  Panayiotis Bozanis,et al.  A Study of R-tree Performance in Hybrid Flash/3DXPoint Storage , 2019, 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA).

[14]  Athanasios Fevgas,et al.  A spatial index for hybrid storage , 2019, IDEAS.

[15]  Athanasios Fevgas,et al.  LB-Grid: An SSD efficient Grid File , 2019, Data Knowl. Eng..

[16]  Cristina Dutra de Aguiar Ciferri,et al.  A generic and efficient framework for flash-aware spatial indexing , 2019, Inf. Syst..

[17]  Jihang Liu,et al.  Initial experience with 3D XPoint main memory , 2019, Distributed and Parallel Databases.

[18]  Wojciech Macyna,et al.  Implementation of the Aggregated R-Tree for Phase Change Memory , 2018, DEXA.

[19]  Cristina Dutra de Aguiar Ciferri,et al.  Analyzing the Performance of Spatial Indices on Flash Memories using a Flash Simulator , 2017, SBBD.

[20]  Cristina Dutra de Aguiar Ciferri,et al.  Analyzing the Performance of Spatial Indices on Hard Disk Drives and Flash-based Solid State Drives , 2017, J. Inf. Data Manag..

[21]  Cristina Dutra de Aguiar Ciferri,et al.  A Generic and Efficient Framework for Spatial Indexing on Flash-Based Solid State Drives , 2017, ADBIS.

[22]  Dan Williams,et al.  Platform Storage Performance With 3D XPoint Technology , 2017, Proceedings of the IEEE.

[23]  Gyu Sang Choi,et al.  R-Tree for phase change memory , 2017, Comput. Sci. Inf. Syst..

[24]  Rubao Lee,et al.  Internal Parallelism of Flash Memory-Based Solid-State Drives , 2016, ACM Trans. Storage.

[25]  Jeffrey S. Vetter,et al.  A Survey of Software Techniques for Using Non-Volatile Memories for Storage and Main Memory Systems , 2016, IEEE Transactions on Parallel and Distributed Systems.

[26]  Karine Zeitouni,et al.  TRIFL: A Generic Trajectory Index for Flash Storage , 2015, TSAS.

[27]  Christian S. Jensen,et al.  Read/write-optimized tree indexing for solid-state drives , 2015, The VLDB Journal.

[28]  Yannis Manolopoulos,et al.  The xBR ^+ -tree: An Efficient Access Method for Points , 2015, DEXA.

[29]  Athanasios Fevgas,et al.  Grid-File: Towards to a Flash Efficient Multi-dimensional Index , 2015, DEXA.

[30]  Peiquan Jin,et al.  Optimizing R-tree for flash memory , 2015, Expert Syst. Appl..

[31]  David Taniar,et al.  A taxonomy for nearest neighbour queries in spatial databases , 2013, J. Comput. Syst. Sci..

[32]  Suman Nath,et al.  Generic and efficient framework for search trees on flash memory storage systems , 2013, GeoInformatica.

[33]  Mahmut T. Kandemir,et al.  Revisiting widely held SSD expectations and rethinking system-level implications , 2013, SIGMETRICS '13.

[34]  Peiquan Jin,et al.  OR-Tree: An Optimized Spatial Tree Index for Flash-Memory Storage Systems , 2012, ICDKE.

[35]  Stratis Viglas,et al.  Adapting the B + -tree for Asymmetric I/O , 2012, ADBIS.

[36]  Maciej Pawlik,et al.  Implementation of the Aggregated R-Tree over Flash Memory , 2012, DASFAA Workshops.

[37]  Ling Yuan,et al.  Efficient implementation of a multi-dimensional index structure over flash memory storage systems , 2011, The Journal of Supercomputing.

[38]  Suman Nath,et al.  FAST: A Generic Framework for Flash-Aware Spatial Trees , 2011, SSTD.

[39]  Jing Li,et al.  Log-Compact R-Tree: An Efficient Spatial Index for SSD , 2011, DASFAA Workshops.

[40]  Pei Zhao,et al.  F-KDB: An K-D-B Tree Implementation over Flash Memory , 2010, 2010 10th IEEE International Conference on Computer and Information Technology.

[41]  Hans-Peter Kriegel,et al.  On the impact of flash SSDs on spatial indexing , 2010, DaMoN '10.

[42]  Peiquan Jin,et al.  Flash-DBSim: A simulation tool for evaluating Flash-based database algorithms , 2009, 2009 2nd IEEE International Conference on Computer Science and Information Technology.

[43]  Ramesh K. Sitaraman,et al.  Lazy-Adaptive Tree: An Optimized Index Structure for Flash Devices , 2009, Proc. VLDB Endow..

[44]  Xiaodong Zhang,et al.  Understanding intrinsic characteristics and system implications of flash memory based solid state drives , 2009, SIGMETRICS '09.

[45]  Esteban Zimányi,et al.  Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications , 2010 .

[46]  Hanan Samet,et al.  Spatial join techniques , 2007, TODS.

[47]  Dimitrios Gunopulos,et al.  Efficient indexing data structures for flash-based sensor devices , 2006, TOS.

[48]  Thomas Behr,et al.  Topological relationships between complex spatial objects , 2006, TODS.

[49]  Tei-Wei Kuo,et al.  An efficient R-tree implementation over flash-memory storage systems , 2003, GIS '03.

[50]  David E. Culler,et al.  TOSSIM: accurate and scalable simulation of entire TinyOS applications , 2003, SenSys '03.

[51]  Panos Kalnis,et al.  Efficient OLAP Operations in Spatial Data Warehouses , 2001, SSTD.

[52]  Yannis Manolopoulos,et al.  EXTERNAL BALANCED REGULAR (x-BR) TREES: NEW STRUCTURES FOR VERY LARGE SPATIAL DATABASES , 2000 .

[53]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[54]  Christos Faloutsos,et al.  Hilbert R-tree: An Improved R-tree using Fractals , 1994, VLDB.

[55]  Dennis Shasha,et al.  2Q: A Low Overhead High Performance Buffer Management Replacement Algorithm , 1994, VLDB.

[56]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[57]  Klaus H. Hinrichs,et al.  Implementation of the grid file: Design concepts and experience , 1985, BIT.

[58]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[59]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[60]  J. Nievergelt,et al.  The Grid File: An Adaptable, Symmetric Multi-Key File Structure , 1981, ECI.

[61]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[62]  Ronald Fagin,et al.  Extendible hashing—a fast access method for dynamic files , 1979, ACM Trans. Database Syst..

[63]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[64]  R. Bayer,et al.  Organization and maintenance of large ordered indices , 1970, SIGFIDET '70.

[65]  Dinkar Sitaram,et al.  Performance tuning analysis of spatial operations on Spatial Hadoop cluster with SSD , 2020 .

[66]  Piotr Jankowski,et al.  Spatial Decision Support Systems: Three decades on , 2019, Decis. Support Syst..

[67]  Cristina Dutra de Aguiar Ciferri,et al.  Indexing Points on Flash-based Solid State Drives using the xBR+-tree , 2019, J. Inf. Data Manag..

[68]  Mohamed Abdel-Basset,et al.  Internet of Spatial Things: A New Reference Model With Insight Analysis , 2019, IEEE Access.

[69]  Cristina Dutra de Aguiar Ciferri,et al.  An Efficient Flash-aware Spatial Index for Points , 2018, GEOINFO.

[70]  Markus Schneider,et al.  Spatial and Spatiotemporal Data Types as a Foundation for Representing Space-Time Data in GIS , 2017 .

[71]  E. Zimányi Advanced Data Warehouse Design , 2017 .

[72]  Cristina Dutra de Aguiar Ciferri,et al.  The performance relation of spatial indexing on hard disk drives and solid state drives , 2016, GEOINFO.

[73]  Suman Nath,et al.  Rethinking Database Algorithms for Phase Change Memory , 2011, CIDR.

[74]  Thiago Luís Lopes Siqueira,et al.  The SB-index and the HSB-index: efficient indices for spatial data warehouses , 2011, GeoInformatica.

[75]  Peter van Oosterom,et al.  Spatial Access Methods , 2009, Encyclopedia of Database Systems.

[76]  Peter J. Denning,et al.  Working Sets Past and Present , 1980, IEEE Transactions on Software Engineering.