Higher taxa as paleoecological and paleoclimatic indicators: A search for the modern analog of the Florissant fossil flora

We used higher taxonomic composition of 241 modern forest plots from across the New World to identify the closest modern analog of the Florissant fossil flora and to infer Late Eocene paleotemperature for Florissant. Non-metric multidimensional scaling (NMS) based on both genus and family presence-absence placed Florissant in a no-analog taxonomic space surrounded by North American warm temperate broadleaved forests, Mexican humid pine-oak forests, and subtropical moist forests from Florida, Mexico, and Argentina. The most similar site to Florissant, as indicated by the mean of Euclidean distances in genus and family NMS space, was a subtropical moist forest in southern Florida, followed by the humid pine-oak forests of central and northeastern Mexico, and the broadleaved deciduous forests of eastern North America.

[1]  S. DeWalt,et al.  Ethnobotany of the Tacana: Quantitative inventories of two permanent plots of Northwestern Bolivia , 1999, Economic Botany.

[2]  R. Welch,et al.  Dry season clouds and rainfall in northern Central America: Implications for the Mesoamerican Biological Corridor , 2006 .

[3]  Sarnam Singh,et al.  Biome mapping in India using vegetation type map derived using temporal satellite data and environmental parameters , 2006 .

[4]  Campbell O. Webb,et al.  Phylogenetic dispersion of host use in a tropical insect herbivore community. , 2006, Ecology.

[5]  D. Royer,et al.  Why Do Toothed Leaves Correlate with Cold Climates? Gas Exchange at Leaf Margins Provides New Insights into a Classic Paleotemperature Proxy , 2006, International Journal of Plant Sciences.

[6]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[7]  D. Gutiérrez,et al.  Changes to the elevational limits and extent of species ranges associated with climate change. , 2005, Ecology letters.

[8]  Kirk R. Johnson,et al.  Modern Tropical Forest Taphonomy: Does High Biodiversity Affect Paleoclimatic Interpretations? , 2005 .

[9]  Dena M. Smith,et al.  Using pre-Quaternary Diptera as indicators of paleoclimate , 2005 .

[10]  J. Smol,et al.  Diatom species–environment relationships and inference models from Isachsen, Ellef Ringnes Island, Canadian High Arctic , 2004, Hydrobiologia.

[11]  R. Schmidt,et al.  Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen , 2004 .

[12]  Stephen T. Jackson,et al.  MODERN ANALOGS IN QUATERNARY PALEOECOLOGY: Here Today, Gone Yesterday, Gone Tomorrow? , 2004 .

[13]  D. Greenwood,et al.  Paleotemperature Estimation Using Leaf-Margin Analysis: Is Australia Different? , 2004 .

[14]  O. Phillips,et al.  Efficient plot-based floristic assessment of tropical forests , 2003, Journal of Tropical Ecology.

[15]  V. Mosbrugger,et al.  Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China , 2003 .

[16]  Campbell O. Webb,et al.  COMMUNITY AND PHYLOGENETIC STRUCTURE OF REPRODUCTIVE TRAITS OF WOODY SPECIES IN WET TROPICAL FORESTS , 2003 .

[17]  A. Lotter,et al.  A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps , 2003 .

[18]  A. Mackay,et al.  Quantitative Palaeoenvironmental Reconstructions from Holocene Biological Data , 2003 .

[19]  D. Dilcher,et al.  Warmer paleotemperatures for terrestrial ecosystems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Elizabeth A. Kowalski Mean annual temperature estimation based on leaf morphology: a test from tropical South America , 2002 .

[21]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[22]  D. Beerling,et al.  High CO2 increases the freezing sensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras , 2002 .

[23]  O. Phillips,et al.  Global Patterns of Plant Diversity: Alwyn H. Gentry's Forest Transect Data Set , 2002 .

[24]  A. Prinzing The niche of higher plants: evidence for phylogenetic conservatism , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  N. Pitman,et al.  Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. , 2001, American journal of botany.

[26]  K. M. Gregory-Wodzicki,et al.  Relationships between leaf morphology and climate, Bolivia: implications for estimating paleoclimate from fossil floras , 2000, Paleobiology.

[27]  Campbell O. Webb,et al.  Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees , 2000, The American Naturalist.

[28]  Elizabeth A. Kellogg,et al.  Plant Systematics: A Phylogenetic Approach , 2000 .

[29]  Herman H. Shugart,et al.  The Holdridge life zones of the conterminous United States in relation to ecosystem mapping , 1999 .

[30]  H. Birks,et al.  D.G. Frey and E.S. Deevey Review 1: Numerical tools in palaeolimnology – Progress, potentialities, and problems , 1998 .

[31]  H. Behling Late Quaternary vegetational and climatic changes in Brazil , 1998 .

[32]  V. Mosbrugger,et al.  The coexistence approach — a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils , 1997 .

[33]  P. Wilf When are leaves good thermometers? A new case for Leaf Margin Analysis , 1997, Paleobiology.

[34]  B. McCune,et al.  Repeatability of Community Data: Species Richness Versus Gradient Scores in Large-scale Lichen Studies , 1997 .

[35]  J. Overpeck,et al.  Mapping eastern North American vegetation change of the past 18 ka: No-analogs and the future , 1992 .

[36]  H. Meyer Lapse rates and other variables applied to estimating paleoaltitudes from fossil floras , 1992 .

[37]  S. Manchester Flowers, fruits, and pollen of Florissantia, an extinct Malvalean genus from the Eocene and Oligocene of western North America , 1992 .

[38]  K. Gregory,et al.  Tectonic significance of paleobotanically estimated climate and altitude of the late Eocene erosion surface, Colorado , 1992 .

[39]  D. Greenwood Taphonomic constraints on foliar physiognomie interpretations of Late Cretaceous and tertiary palaeoeclimates , 1992 .

[40]  S. Manchester ATTACHED REPRODUCTIVE AND VEGETATIVE REMAINS OF THE EXTINCT AMERICAN‐EUROPEAN GENUS CEDRELOSPERMUM (ULMACEAE) FROM THE EARLY TERTIARY OF UTAH AND COLORADO , 1989 .

[41]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[42]  Kam‐biu Liu,et al.  A 5200-year history of Amazon rain forest , 1988 .

[43]  S. Manchester,et al.  A New Genus of Betulaceae from the Oligocene of Western North America , 1987, Botanical Gazette.

[44]  D. Trimble Cenozoic Tectonic History of the Great Plains Contrasted with that of the Southern Rocky Mountains: A Synthesis , 1980, Mountain Geologist.

[45]  J. A. Wolfe Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia: analysis of temperature data from more than 400 stations in Eastern Asia , 1979 .

[46]  H. M. Sachs,et al.  Paleoecological Transfer Functions , 1977 .

[47]  L. Holdridge Life zone ecology. , 1967 .

[48]  R. Anderson,et al.  Laminations of the Oligocene Florissant Lake Deposits, Colorado , 1966 .