Synthesis of W‐doped TiO2 by low‐temperature hydrolysis: Effects of annealing temperature and doping content on the surface microstructure and photocatalytic activity

[1]  R. Romero,et al.  W and Mo doped TiO2: Synthesis, characterization and photocatalytic activity , 2017 .

[2]  B. Liu,et al.  A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation , 2017, Scientific Reports.

[3]  C. M. Rangel,et al.  Modification of N-doped TiO2 photocatalysts using noble metals (Pt, Pd) - a combined XPS and DFT study. , 2017, Physical chemistry chemical physics : PCCP.

[4]  S. Nishanthi,et al.  Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra , 2017 .

[5]  D. Robert,et al.  Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron. , 2017, Water science and technology : a journal of the International Association on Water Pollution Research.

[6]  B. Ohtani,et al.  Surface Modification of TiO2 with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light , 2016 .

[7]  M. H. Rasoulifard,et al.  Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water , 2016 .

[8]  R. Kumar,et al.  Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment , 2016, Scientific Reports.

[9]  Imran Khan Swati,et al.  Fe3+-doped Anatase TiO2 with d–d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV–vis Photocatalytic and Mechanistic Studies , 2016 .

[10]  S. Ansari,et al.  Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications , 2016, Scientific Reports.

[11]  B. Lin,et al.  Photodegradation of methylene blue in the visible spectrum: An efficient W6+ ion doped anatase titania photocatalyst via a solvothermal method , 2016 .

[12]  Tsunehiro Tanaka,et al.  Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation , 2016 .

[13]  Yingying Li,et al.  Stable Ti3+ Self-Doped Anatase-Rutile Mixed TiO2 with Enhanced Visible Light Utilization and Durability , 2016 .

[14]  B. Ohtani,et al.  Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis , 2016 .

[15]  B. Ohtani,et al.  Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods , 2016 .

[16]  P. Ndungu,et al.  Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid using W-doped TiO2 , 2015 .

[17]  G. Blanco,et al.  Study of thulium doping effect and enhancement of photocatalytic activity of rutile TiO2 nanoparticles , 2015 .

[18]  I. Parkin,et al.  Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition , 2015, Scientific Reports.

[19]  J. Juan,et al.  Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine , 2015 .

[20]  G. Blanco,et al.  Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase , 2015, Beilstein journal of nanotechnology.

[21]  J. Navas,et al.  Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application. , 2014, Nanoscale.

[22]  G. Blanco,et al.  Synthesis and Characterization of Gel-Derived, Highly Al-Doped TiO 2 (Al x Ti 1– x O 2– x /2 ; x = 0.083, 0.154, 0.2) Nanoparticles: Improving the Photocatalytic Activity , 2014 .

[23]  Liyi Shi,et al.  Tuning the morphology, stability and photocatalytic activity of TiO2 nanocrystal colloids by tungsten doping , 2014 .

[24]  Xiangcun Li,et al.  Morphology Control of TiO2 Nanoparticle in Microemulsion and Its Photocatalytic Property , 2014 .

[25]  F. Ruggieri,et al.  Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G , 2013, Journal of Nanoparticle Research.

[26]  N. Chen,et al.  Influence of tungsten doping concentration on the electronic and optical properties of anatase TiO2 , 2013 .

[27]  Z. Dong,et al.  Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G , 2013 .

[28]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[29]  R. Bartali,et al.  Influence of hydrogen addition to an Ar plasma on the structural properties of TiO2−x thin films deposited by RF sputtering , 2012 .

[30]  J. J. Gallardo,et al.  On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps. , 2012, The Review of scientific instruments.

[31]  Baozhu Tian,et al.  One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases , 2012 .

[32]  I. Parkin,et al.  Combinatorial atmospheric pressure chemical vapor deposition (cAPCVD): a route to functional property optimization. , 2011, Journal of the American Chemical Society.

[33]  P. Smirniotis,et al.  Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures , 2011 .

[34]  Baozhu Tian,et al.  Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping , 2011 .

[35]  F. Chong,et al.  Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. , 2010, Journal of hazardous materials.

[36]  L. Miao,et al.  W-doped anatase TiO2 transparent conductive oxide films: Theory and experiment , 2010 .

[37]  Ronaldo G. Maghirang,et al.  Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation , 2009 .

[38]  O. Lorret,et al.  W-doped titania nanoparticles for UV and visible-light photocatalytic reactions , 2009 .

[39]  J. Hupka,et al.  TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties , 2008 .

[40]  Sylvie Rossignol,et al.  Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light , 2008 .

[41]  P. Salvador,et al.  On the Nature of Photogenerated Radical Species Active in the Oxidative Degradation of Dissolved Pollutants with TiO2 Aqueous Suspensions: A Revision in the Light of the Electronic Structure of Adsorbed Water , 2007 .

[42]  Wei Sun,et al.  Investigation on the transition crystal of ordinary rutile TiO2 powder by microwave irradiation in hydrogen peroxide solution and its sonocatalytic activity. , 2007, Ultrasonics sonochemistry.

[43]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[44]  Jinlong Zhang,et al.  Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III) , 2007 .

[45]  Jiaguo Yu,et al.  EFFECTS OF HYDROTHERMAL TEMPERATURE AND TIME ON THE PHOTOCATALYTIC ACTIVITY AND MICROSTRUCTURES OF BIMODAL MESOPOROUS TIO2 POWDERS , 2007 .

[46]  T. B. Ghosh,et al.  On crystallite size dependence of phase stability of nanocrystalline TiO2 , 2003 .

[47]  G. Córdoba,et al.  Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process , 2002 .

[48]  Chunlei Yang,et al.  PHOTOCATALYTIC ACTIVITY OF WOX-TIO2 UNDER VISIBLE LIGHT IRRADIATION , 2001 .

[49]  P. Smirniotis,et al.  Influence of synthesis method on leaching of the Cr-TiO2 catalyst for visible light liquid phase photocatalysis and their stability , 2016 .

[50]  Shaobin Wang A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater , 2008 .