Structure, properties, and biomedical performance of osteoconductive bioceramic coatings

Abstract The development of bioceramic materials is at the forefront of health-related issues in many countries. Arguably, research into ceramic biomaterials has reached a level of involvement and sophistication comparable only to electronic ceramics. Despite the fact that calcium phosphate-based coatings on hip, knee and dental implants have a long history of clinical success the quest of improving the longevity of implants and to impart them with better physiological properties is high up on the agenda of numerous research groups around the world. Coating the stem of modern cementless endoprostheses with a layer of plasma-sprayed hydroxyapatite improves the ingrowth of bone cells and thus assists in anchoring the implant to the cortical bone matter. However, since the high temperature process of plasma spraying leads to incongruent melting and thus thermal decomposition of the hydroxyapatite, knowledge of the complex transformation sequence is essential to design coatings with optimum stability and hence biological performance. This contribution reviews recent research into the thermal history of thermally sprayed calcium phosphate coatings as well as their in vitro behavior in contact with simulated body fluid.

[1]  B. Tay,et al.  Tribological characterization of surface modified UHMWPE against DLC-coated Co-Cr-Mo , 2005 .

[2]  Tadashi Kokubo,et al.  Bioceramics and Their Clinical Applications , 2008 .

[3]  T. Anada,et al.  Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates. , 2012, Acta biomaterialia.

[4]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[5]  N. Tamari,et al.  Mechanical Properties and Existing Phases of Composite Ceramics Obtained by Sintering of a Mixture of Hydroxyapatite and Zirconia , 1987 .

[6]  S. Stupp,et al.  Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. , 1997, Science.

[7]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[8]  S. Radin,et al.  The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation. , 1993, Journal of biomedical materials research.

[9]  Dietmar Werner Hutmacher,et al.  State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective , 2007, Journal of tissue engineering and regenerative medicine.

[10]  Nicolas Blanchemain,et al.  Surface coatings for biological activation and functionalization of medical devices , 2006 .

[11]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[12]  C. Rey,et al.  Progres dans le domaine de la chimie des composes phosphores solides a structure d'apatite. Application a la biologie et au traitement des minerais , 1980 .

[13]  Robert B. Heimann,et al.  Thermal spraying of biomaterials , 2006 .

[14]  N. D. de Leeuw,et al.  A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. , 2006, Biomaterials.

[15]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[16]  Anirudha V. Sumant,et al.  Medical applications of diamond particles & surfaces , 2011 .

[17]  S. Yarmolenko,et al.  In vivo fluorescence imaging of apoptosis during foreign body response. , 2012, Biomaterials.

[18]  Larsson,et al.  Elucidation of the crystal structure of oxyapatite by high-resolution electron microscopy. , 1999, Acta crystallographica. Section B, Structural science.

[19]  S. Downes,et al.  Comparison of the early production of extracellular matrix on dense hydroxyapatite and hydroxyapatite-coated titanium in cell and organ culture. , 1995, Biomaterials.

[20]  R. Heimann,et al.  In vitro and in vivo performance of Ti6Al4V implants with plasma-sprayed osteoconductive hydroxylapatite–bioinert titania bond coat “duplex” systems: an experimental study in sheep , 2004, Journal of materials science. Materials in medicine.

[21]  M. Mathew,et al.  Structures of Biological Minerals in Dental Research , 2001, Journal of research of the National Institute of Standards and Technology.

[22]  T. Webster,et al.  Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. , 2003, Journal of biomedical materials research. Part A.

[23]  L. Pawłowski,et al.  Numerical simulation of hydroxyapatite powder behaviour in plasma jet , 2004 .

[24]  L. Hovy,et al.  Präklinische Ergebnisse beschichteter Knieimplantate für Allergiker , 2010, Der Orthopäde.

[25]  J. Amédée,et al.  Inflammatory cell response to calcium phosphate biomaterial particles: an overview. , 2013, Acta biomaterialia.

[26]  M. Staia,et al.  Chemical vapour deposition of TiN on stainless steel , 1995 .

[27]  M. Raimondi,et al.  The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating. , 2000, Biomaterials.

[28]  Ying Jun Wang,et al.  Mechanical performances and microstructural characteristics of plasma-sprayed bio-functionally gradient HA–ZrO2–Ti coatings , 2005 .

[29]  S. Hesaraki,et al.  Development of strong and bioactive calcium phosphate cement as a light-cure organic–inorganic hybrid , 2012, Journal of Materials Science: Materials in Medicine.

[30]  N. Gane,et al.  Structural characterization of plasma-sprayed hydroxylapatite coatings , 1995 .

[31]  T. Ala‐Nissila,et al.  Mechanisms of dislocation nucleation in strained epitaxial layers , 2002, cond-mat/0308186.

[32]  J. Lebrun,et al.  Study by X-ray diffraction and mechanical analysis of the residual stress generation during thermal spraying , 2003 .

[33]  Quyen Q. Hoang,et al.  Bone recognition mechanism of porcine osteocalcin from crystal structure , 2003, Nature.

[34]  T. Hanawa,et al.  Characterization of CaTiO3 thin film prepared by ion-beam assisted deposition , 2006 .

[35]  M. Yashima,et al.  Determination of Precise Unit‐Cell Parameters of the α‐Tricalcium Phosphate Ca3(PO4)2 Through High‐Resolution Synchrotron Powder Diffraction , 2007 .

[36]  R. Heimann,et al.  Microstructural investigation into calcium phosphate biomaterials by spatially resolved cathodoluminescence , 2001 .

[37]  F. Cui,et al.  Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals , 2006 .

[38]  Lothar Borchers,et al.  Nonalloyed titanium as a bioinert metal--a review. , 2005, Quintessence international.

[39]  Y. Zhao,et al.  Formation of bioactive titania films under specific anodisation conditions , 2012 .

[40]  Donghun Lee,et al.  Characterization of hydroxyapatite: Before and after plasma spraying , 2002, Journal of materials science. Materials in medicine.

[41]  P. Hartmann,et al.  Solid State NMR, X-Ray Diffraction, and Infrared Characterization of Local Structure in Heat-Treated Oxyhydroxyapatite Microcrystals: An Analog of the Thermal Decomposition of Hydroxyapatite during Plasma-Spray Procedure , 2001 .

[42]  O. Suzuki Octacalcium phosphate: osteoconductivity and crystal chemistry. , 2010, Acta biomaterialia.

[43]  Vamsi Krishna Balla,et al.  Tantalum—A bioactive metal for implants , 2010 .

[44]  C. Persson,et al.  Fabrication and evaluation of SixNy coatings for total joint replacements , 2012, Journal of Materials Science: Materials in Medicine.

[45]  W. Wagner,et al.  Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. , 1999, Biomaterials.

[46]  H. Zreiqat,et al.  Functional Coatings or Films for Hard-Tissue Applications , 2010, Materials.

[47]  L L Hench,et al.  Surface-active biomaterials. , 1984, Science.

[48]  M. Ahmadian,et al.  Novel bioactive Co-based alloy/FA nanocomposite for dental applications , 2012, Dental research journal.

[49]  C. Berndt,et al.  Thermal Analysis of Amorphous Phases in Hydroxyapatite Coatings , 2005 .

[50]  Hans-Georg Neumann,et al.  Silica/Calcium Phosphate Sol-Gel Derived Bone Grafting Material — From Animal Tests to First Clinical Experience , 2003 .

[51]  R. Gildenhaar,et al.  Rapid resorbable, glassy crystalline materials on the basis of calcium alkali orthophosphates. , 1995, Biomaterials.

[52]  L. Silvio Cellular response to biomaterials , 2009 .

[53]  M. Yashima,et al.  Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction , 2003 .

[54]  J. Chevalier,et al.  Ceramics for medical applications: A picture for the next 20 years , 2009 .

[55]  C. V. van Blitterswijk,et al.  Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. , 1994, Biomaterials.

[56]  B. C. Wang,et al.  Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: Part I Phase, microstructure and bonding strength , 1997, Journal of materials science. Materials in medicine.

[57]  R. Kamijo,et al.  Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. , 2006, Biomaterials.

[58]  S D Cook,et al.  Hydroxyapatite-coated titanium for orthopedic implant applications. , 1988, Clinical orthopaedics and related research.

[59]  W. Walsh,et al.  Analysis of retrieved hydroxyapatite-coated hip prostheses , 2004 .

[60]  N. D. de Leeuw,et al.  A computational investigation of stoichiometric and calcium-deficient oxy- and hydroxy-apatites. , 2007, Faraday discussions.

[61]  Cato T Laurencin,et al.  Polymers as biomaterials for tissue engineering and controlled drug delivery. , 2006, Advances in biochemical engineering/biotechnology.

[62]  T. W. Clyne,et al.  Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work , 1996 .

[63]  J. Planell,et al.  Bone repair biomaterials , 2009 .

[64]  G. Bourne,et al.  The biochemistry and physiology of bone , 1956 .

[65]  Ayako Oyane,et al.  Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution , 2000 .

[66]  J. Meng,et al.  Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. , 2006, Journal of biomedical materials research. Part A.

[67]  J. Matějíček,et al.  In situ measurement of residual stresses and elastic moduli in thermal sprayed coatings: Part 1: apparatus and analysis , 2003 .

[68]  M. Endo,et al.  Carbon nanotubes: biomaterial applications. , 2009, Chemical Society reviews.

[69]  Y. Konttinen,et al.  Load-Bearing Biomedical Applications of Diamond-Like Carbon Coatings - Current Status , 2008, The open orthopaedics journal.

[70]  D. Grijpma,et al.  Advanced functional polymers for medicine: multifunctional biomaterials. , 2012, Acta biomaterialia.

[71]  L. Pawłowski,et al.  Corrigendum to “Numerical simulation of hydroxyapatite powder behaviour in plasma jet” [Surf. Coat. Technol. 179 (2004) 110–117] , 2004 .

[72]  Yaming Wang,et al.  Structure of calcium titanate/titania bioceramic composite coatings on titanium alloy and apatite deposition on their surfaces in a simulated body fluid , 2007 .

[73]  R. Heimann,et al.  Laser‐Raman and Nuclear Magnetic Resonance (NMR) studies on plasma‐sprayed hydroxylapatite coatings: Influence of bioinert bond coats on phase composition and resorption kinetics in simulated body fluid , 2003 .

[74]  L Geris,et al.  Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. , 2012, Acta biomaterialia.

[75]  A. S. Posner,et al.  Refinement of the hydroxyapatite structure , 1958 .

[76]  Raimund Erbel,et al.  Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial , 2007, The Lancet.

[77]  R. Heimann Characterization of as‐plasma‐sprayed and incubated hydroxyapatite coatings with high resolution techniques , 2009 .

[78]  R. Heimann,et al.  Microstructural characterisation and stress determination in as-plasma sprayed and incubated bioconductive hydroxyapatite coatings , 2006 .

[79]  M. Khil,et al.  Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid , 2006 .

[80]  R. B. Heimann,et al.  Design of novel plasma sprayed hydroxyapatite-bond coat bioceramic systems , 1999 .

[81]  R. Fitzpatrick eMedicine , 2002, Medical reference services quarterly.

[82]  W. Dollase,et al.  X-ray determination of crystalline hydroxyapatite to amorphous calcium-phosphate ratio in plasma sprayed coatings. , 2000, Journal of biomedical materials research.

[83]  R. Heimann,et al.  Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. , 2006, Biomaterials.

[84]  Angel Rubio,et al.  Electronic and crystallographic structure of apatites , 2003 .

[85]  M. Fleet Infrared spectra of carbonate apatites: v2-Region bands. , 2009, Biomaterials.

[86]  P. Fauchais,et al.  Knowledge concerning splat formation: An invited review , 2004 .

[87]  R. B. Heimann,et al.  In vivo-Untersuchungen zur Osseointegration von Hydroxylapatit-beschichteten Ti6Al4VImplantaten mit und ohne bioinerter Titanoxid-Haftvermittlerschicht , 2004 .

[88]  B. C. Wang,et al.  Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: Part II Dissolution behaviour in simulated body fluid and bonding degradation , 1997, Journal of materials science. Materials in medicine.

[89]  E. Verron,et al.  Controlling the biological function of calcium phosphate bone substitutes with drugs. , 2012, Acta biomaterialia.

[90]  F. Lin,et al.  Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. , 1999, Biomaterials.

[91]  M. Kakihana,et al.  β-Rhenanite (β-NaCaPO4) as Weak Interphase for Hydroxyapatite Ceramics , 1998 .

[92]  L. Hench,et al.  CRC handbook of bioactive ceramics , 1990 .

[93]  T. Kijima,et al.  Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite , 1979 .

[94]  A. Boyde,et al.  Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[95]  A. Bandyopadhyay,et al.  Laser-assisted Zr/ZrO(2) coating on Ti for load-bearing implants. , 2009, Acta biomaterialia.

[96]  D. Shum-Tim,et al.  Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. , 2013, Acta biomaterialia.

[97]  M. B. Bever,et al.  Concise encyclopedia of medical & dental materials , 1990 .

[98]  R. Heimann,et al.  Compositional and microstructural changes of engineered plasma-sprayed hydroxyapatite coatings on Ti6Al4V substrates during incubation in protein-free simulated body fluid. , 2000, Journal of biomedical materials research.

[99]  Aldo R. Boccaccini,et al.  Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering , 2010, Materials.

[100]  L. Hench,et al.  In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates. , 1998, Journal of biomedical materials research.

[101]  K. Groot Medical applications of calciumphosphate bioceramics , 1991 .

[102]  R. Heimann,et al.  Microstructural and in vitro chemical investigations into plasma-sprayed bioceramic coatings. , 1998, Journal of biomedical materials research.

[103]  E. Chang,et al.  Plasma-sprayed zirconia bond coat as an intermediate layer for hydroxyapatite coating on titanium alloy substrate , 2002, Journal of materials science. Materials in medicine.

[104]  C. Berndt,et al.  Oxyapatite in hydroxyapatite coatings , 1998 .

[105]  M. Urist Bone: Formation by Autoinduction , 1965, Science.

[106]  S. Santavirta,et al.  Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. , 2003, Journal of biomedical materials research. Part B, Applied biomaterials.

[107]  Alida Bellosi,et al.  On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity , 2008, Journal of materials science. Materials in medicine.

[108]  K. Khor,et al.  Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders. , 2003, Biomaterials.