Thermoelectric Energy Harvesting for Powering Wearable Electronics

[1]  N. Neophytou,et al.  Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor , 2016 .

[2]  Luca Francioso,et al.  An 80 mV Startup Voltage Fully Electrical DC–DC Converter for Flexible Thermoelectric Generators , 2016, IEEE Sensors Journal.

[3]  Kwang-Suk Jang,et al.  Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment , 2015, Scientific Reports.

[4]  P. Woias,et al.  Novel Fabrication Process for Micro Thermoelectric Generators (μTEGs) , 2015 .

[5]  G. Tanda,et al.  The use of infrared thermography to detect the skin temperature response to physical activity , 2015 .

[6]  Luca Francioso,et al.  A flexible thermoelectric generator with a fully electrical, low startup voltage and high efficiency DC-DC converter , 2015, 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI).

[7]  Luca Francioso,et al.  Experimental assessment of thermoelectric generator package properties: Simulated results validation and real gradient capabilities , 2015 .

[8]  Tong Lin,et al.  Thermoelectric Fabrics: Toward Power Generating Clothing , 2015, Scientific Reports.

[9]  Zhuang-hao Zheng,et al.  Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials , 2015 .

[10]  Y. Tochihara,et al.  The Thermal Manikin; a Useful and Effective Device for Evaluating Human Thermal Environments , 2015 .

[11]  Zheng Yuan,et al.  A planar micro thermoelectric generator with high thermal resistance , 2015 .

[12]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[13]  Haijun Wu,et al.  High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. , 2014, Journal of the American Chemical Society.

[14]  H. Kosina,et al.  Gated Si nanowires for large thermoelectric power factors , 2014, 1409.7045.

[15]  S. D'Amico,et al.  A 40mV start up voltage DC - DC converter for thermoelectric energy harvesting applications , 2014, 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[16]  Enhancement of the thermoelectric power factor of MnSi1.7 film by modulation doping of Al and Cu , 2014 .

[17]  Takao Ishida,et al.  Polymer thermoelectric modules screen-printed on paper , 2014 .

[18]  B. Cho,et al.  A wearable thermoelectric generator fabricated on a glass fabric , 2014 .

[19]  Yoshihito Kurazumi,et al.  Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling , 2014 .

[20]  Magnus Berggren,et al.  Semi-metallic polymers. , 2014, Nature materials.

[21]  Alic Chen,et al.  Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3 , 2014 .

[22]  Muhammad Mustafa Hussain,et al.  Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100). , 2013, Small.

[23]  P. Wright,et al.  High-performance dispenser printed MA p-type Bi(0.5)Sb(1.5)Te(3) flexible thermoelectric generators for powering wireless sensor networks. , 2013, ACS applied materials & interfaces.

[24]  Osamu Tsuboi,et al.  A high-output-voltage micro-thermoelectric generator having high-aspect-ratio structure , 2013 .

[25]  L. Lorenzelli,et al.  Structural reliability and thermal insulation performance of flexible thermoelectric generator for wearable sensors , 2013, 2013 IEEE SENSORS.

[26]  J. Bowers,et al.  Field-effect modulation of thermoelectric properties in multigated silicon nanowires. , 2013, Nano letters.

[27]  Toshihide Kamata,et al.  Flexible and lightweight thermoelectric generators composed of carbon nanotube–polystyrene composites printed on film substrate , 2013 .

[28]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[29]  L. Francioso,et al.  PDMS/Kapton interface plasma treatment effects on the polymeric package for a wearable thermoelectric generator. , 2013, ACS applied materials & interfaces.

[30]  Luca Francioso,et al.  Thin film technology flexible thermoelectric generator and dedicated ASIC for energy harvesting applications , 2013, 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI.

[31]  D. Cahill,et al.  Thermal Conductivity of High-Modulus Polymer Fibers , 2013 .

[32]  P. Siciliano,et al.  Wearable and flexible thermoelectric generator with enhanced package , 2013, Microtechnologies for the New Millennium.

[33]  H. Kosina,et al.  Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si , 2013, Nanotechnology.

[34]  Ying-Chung Chen,et al.  Annealing effect on the thermoelectric properties of Bi 2 Te 3 thin films prepared by thermal evaporation method , 2013 .

[35]  Alic Chen,et al.  Enhanced performance of dispenser printed MA n-type Bi₂Te₃ composite thermoelectric generators. , 2012, ACS applied materials & interfaces.

[36]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[37]  G. Ottaviani,et al.  Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors , 2012 .

[38]  Chris Van Hoof,et al.  Thermoelectric generator hidden in a shirt with a fabric radiator , 2012 .

[39]  M. Toimil-Molares,et al.  Electrodeposition of bismuth telluride nanowires with controlled composition in polycarbonate membranes , 2012 .

[40]  M. Inoue,et al.  Fabrication and properties of thermoelectric oxide thick films deposited with aerosol deposition method , 2012 .

[41]  Jivtesh Garg,et al.  Minimum thermal conductivity in superlattices: A first-principles formalism , 2012 .

[42]  Reinhard Neumann,et al.  Tuning the Geometrical and Crystallographic Characteristics of Bi2Te3 Nanowires by Electrodeposition in Ion-Track Membranes , 2012 .

[43]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[44]  N. Peranio,et al.  Stoichiometry Controlled, Single‐Crystalline Bi2Te3 Nanowires for Transport in the Basal Plane , 2012 .

[45]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[46]  Marimuthu Palaniswami,et al.  Healthcare sensor networks :challenges toward practical implementation , 2011 .

[47]  G. Mussler,et al.  MBE growth optimization of topological insulator Bi2Te3 films , 2011 .

[48]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[49]  P. Siciliano,et al.  Polyimide/PDMS flexible thermoelectric generator for ambient assisted living applications , 2011, Microtechnologies.

[50]  Vladimir Leonov,et al.  Characterization of a Bulk-Micromachined Membraneless In-Plane Thermopile , 2011 .

[51]  Y. Xia,et al.  The synthesis of Bi2Te3 nanobelts by vapor–liquid–solid method and their electrical transport properties , 2011 .

[52]  Luca Francioso,et al.  Flexible thermoelectric generator for ambient assisted living wearable biometric sensors , 2011 .

[53]  P. Siciliano,et al.  Flexible thermoelectric generator for wearable biometric sensors , 2010, 2010 IEEE Sensors.

[54]  José Higino Correia,et al.  A planar thermoelectric power generator for integration in wearable microsystems , 2010 .

[55]  M. Plissonnier,et al.  Development of (Bi,Sb)2(Te,Se)3-Based Thermoelectric Modules by a Screen-Printing Process , 2010 .

[56]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[57]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[58]  C. Boulanger,et al.  Thermoelectric Material Electroplating: a Historical Review , 2010 .

[59]  Ching-Liang Dai,et al.  Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators , 2010, Sensors.

[60]  D. M. Mattox Chapter 12 – Adhesion and Deadhesion , 2010 .

[61]  S. Lok,et al.  Molecular beam epitaxy-grown Bi4Te3 nanowires , 2009 .

[62]  J. Heremans,et al.  Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power , 2009 .

[63]  Chris Van Hoof,et al.  Realization of a wearable miniaturized thermoelectric generator for human body applications , 2009 .

[64]  K. Varahramyan,et al.  Electrodeposition and Thermoelectric Characterization of Bismuth Telluride Nanowires , 2009 .

[65]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[66]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[67]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[68]  E. Schwyter,et al.  $\hbox{Bi}_{2}\hbox{Te}_{3}$-Based Flexible Micro Thermoelectric Generator With Optimized Design , 2009, Journal of Microelectromechanical Systems.

[69]  Naoki Matsubara,et al.  Radiative and convective heat transfer coefficients of the human body in natural convection , 2008 .

[70]  Ryozo Ooka,et al.  Numerical and experimental study on convective heat transfer of the human body in the outdoor environment , 2008 .

[71]  U. Gösele,et al.  Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition , 2008, Nanotechnology.

[72]  Norbert Kockmann,et al.  Design and fabrication of MEMS thermoelectric generators with high temperature efficiency , 2008 .

[73]  Christofer Hierold,et al.  Flexible micro thermoelectric generator based on electroplated Bi2+xTe3−x , 2008, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[74]  C. L. Lim,et al.  Human thermoregulation and measurement of body temperature in exercise and clinical settings. , 2008, Annals of the Academy of Medicine, Singapore.

[75]  Christofer Hierold,et al.  Optimization and fabrication of thick flexible polymer based micro thermoelectric generator , 2006 .

[76]  K. Kuwabara,et al.  Experiments to determine the convective heat transfer coefficient of a thermal manikin , 2005 .

[77]  J. Ketterson,et al.  Structural and thermoelectric properties in (Sb1-xBix)2Te3 thin films , 2004 .

[78]  Charlie Huizenga,et al.  Skin and core temperature response to partial- and whole-body heating and cooling , 2004 .

[79]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[80]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[81]  E. Arens,et al.  Convective and radiative heat transfer coefficients for individual human body segments , 1997, International journal of biometeorology.

[82]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[83]  A. Boyer,et al.  Structural and electrical properties of bismuth telluride films grown by the molecular beam technique , 1988 .

[84]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[85]  J. Friedel,et al.  ON SOME ELECTRICAL AND MAGNETIC PROPERTIES OF METALLIC SOLID SOLUTIONS , 1956 .