Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year

[1]  Nikolas Geroliminis,et al.  Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing , 2015 .

[2]  Jorge A. Laval,et al.  Macroscopic urban dynamics: Analytical and numerical comparisons of existing models , 2017 .

[3]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[4]  Michelle Y. Merrill,et al.  Orangutan Cultures and the Evolution of Material Culture , 2003, Science.

[5]  Martin Raubal,et al.  Extracting Dynamic Urban Mobility Patterns from Mobile Phone Data , 2012, GIScience.

[6]  Nikolaos Geroliminis,et al.  On the spatial partitioning of urban transportation networks , 2012 .

[7]  Kay W. Axhausen,et al.  Empirical macroscopic fundamental diagrams: New insights from loop detector and floating car data , 2016 .

[8]  Marta C. González,et al.  Understanding individual human mobility patterns , 2008, Nature.

[9]  N. Geroliminis,et al.  An analytical approximation for the macropscopic fundamental diagram of urban traffic , 2008 .

[10]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[11]  Monica Menendez,et al.  Introducing a Re-Sampling Methodology for the Estimation of Empirical Macroscopic Fundamental Diagrams , 2017, Transportation Research Record: Journal of the Transportation Research Board.

[12]  Kay W. Axhausen,et al.  A functional form with a physical meaning for the macroscopic fundamental diagram , 2020 .

[13]  D. Waddle Matrix correlation tests support a single origin for modern humans , 1994, Nature.

[14]  Rashid A. Waraich,et al.  A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model , 2012 .

[15]  Xuesong Zhou,et al.  Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach , 2015 .

[16]  Nikolaos Geroliminis,et al.  Empirical Observations of Congestion Propagation and Dynamic Partitioning with Probe Data for Large-Scale Systems , 2014 .

[17]  Monica Menendez,et al.  Use of Microsimulation for Examination of Macroscopic Fundamental Diagram Hysteresis Patterns for Hierarchical Urban Street Networks , 2015 .

[18]  Serge P. Hoogendoorn,et al.  Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram , 2015 .

[19]  Dirk Helbing,et al.  The spatial variability of vehicle densities as determinant of urban network capacity , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Vikash V. Gayah,et al.  Clockwise Hysteresis Loops in the Macroscopic Fundamental Diagram , 2010 .

[21]  F. Busch,et al.  Evaluation of analytical approximation methods for the macroscopic fundamental diagram , 2020 .

[22]  Eamonn J. Keogh,et al.  The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances , 2016, Data Mining and Knowledge Discovery.

[23]  Kay W. Axhausen,et al.  A case study of Zurich’s two-layered perimeter control , 2017 .

[24]  Alexander Kowarik,et al.  Imputation with the R Package VIM , 2016 .

[25]  R. L. Thorndike Who belongs in the family? , 1953 .

[26]  Kay W. Axhausen,et al.  Approximative Network Partitioning for MFDs from Stationary Sensor Data , 2019 .

[27]  W. Vickrey Congestion in midtown Manhattan in relation to marginal cost pricing , 2020 .

[28]  N. Geroliminis,et al.  Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings - eScholarship , 2007 .

[29]  Xuesong Zhou,et al.  Estimating risk effects of driving distraction: a dynamic errorable car-following model , 2015 .

[30]  Marta C. González,et al.  Understanding congested travel in urban areas , 2016, Nature Communications.

[31]  Nikolas Geroliminis,et al.  Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control , 2015 .

[32]  Toni Giorgino,et al.  Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation , 2009, Artif. Intell. Medicine.

[33]  Nikolaos Geroliminis,et al.  Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks , 2017 .

[34]  Victor L. Knoop,et al.  Influence of Road Layout on Network Fundamental Diagram , 2014 .

[35]  Ludovic Leclercq,et al.  Revealing the day-to-day regularity of urban congestion patterns with 3D speed maps , 2017, Scientific Reports.

[36]  Victor L. Knoop,et al.  Examining perimeter gating control of urban traffic networkswith locally adaptive traffic signals , 2015 .

[37]  Monica Menendez,et al.  Understanding traffic capacity of urban networks , 2019, Scientific Reports.

[38]  Nan Zheng,et al.  Heterogeneity aware urban traffic control in a connected vehicle environment: A joint framework for congestion pricing and perimeter control , 2019, Transportation Research Part C: Emerging Technologies.

[39]  Ashish Bhaskar,et al.  A pattern recognition algorithm for assessing trajectory completeness , 2018, Transportation Research Part C: Emerging Technologies.

[40]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[41]  Mark Hickman,et al.  A methodology for identifying critical links and estimating macroscopic fundamental diagram in large-scale urban networks , 2020 .

[42]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[43]  Nikolaos Geroliminis,et al.  Clustering of Heterogeneous Networks with Directional Flows Based on “Snake” Similarities , 2016 .

[44]  Alexis Sardá-Espinosa,et al.  Time-Series Clustering in R Using the dtwclust Package , 2019, R J..

[45]  N. Geroliminis,et al.  Cordon Pricing Consistent with the Physics of Overcrowding , 2009 .

[46]  N. Geroliminis,et al.  A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks , 2014 .

[47]  Nikolaos Geroliminis,et al.  Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic , 2011 .

[48]  Peter Filzmoser,et al.  Outlier identification in high dimensions , 2008, Comput. Stat. Data Anal..

[49]  Ludovic Leclercq,et al.  Macroscopic Traffic Dynamics with Heterogeneous Route Patterns , 2015 .

[50]  Meead Saberi,et al.  Urban Network Gridlock: Theory, Characteristics, and Dynamics , 2013 .

[51]  Carlos F. Daganzo,et al.  Urban Gridlock: Macroscopic Modeling and Mitigation Approaches , 2007 .

[52]  Jorge A. Laval,et al.  Stochastic Approximations for the Macroscopic Fundamental Diagram of Urban Networks , 2015 .

[53]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[54]  Emilian Necula,et al.  Analyzing Traffic Patterns on Street Segments Based on GPS Data Using R , 2015 .

[55]  Monica Menendez,et al.  Study on the number and location of measurement points for an MFD perimeter control scheme: a case study of Zurich , 2014, EURO J. Transp. Logist..

[56]  Claus Bahlmann,et al.  The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Wei Luo,et al.  A Dynamic Time Warping Algorithm Based Analysis of Pedestrian Shockwaves at Bottleneck , 2018 .

[58]  Christine Buisson,et al.  Exploring the Impact of Homogeneity of Traffic Measurements on the Existence of Macroscopic Fundamental Diagrams , 2009 .

[59]  Monica Menendez,et al.  Multi-scale perimeter control approach in a connected-vehicle environment , 2016, Transportation Research Part C: Emerging Technologies.

[60]  Nikolaos Geroliminis,et al.  On the stability of traffic perimeter control in two-region urban cities , 2012 .

[61]  S. Ilgin Guler,et al.  Providing public transport priority in the perimeter of urban networks: A bimodal strategy , 2019, Transportation Research Part C: Emerging Technologies.

[62]  Rob J Hyndman,et al.  Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing , 2011 .

[63]  Ludovic Leclercq,et al.  Validation of Macroscopic Fundamental Diagrams-Based Models with Microscopic Simulations on Real Networks: Importance of Production Hysteresis and Trip Lengths Estimation , 2019, Transportation Research Record: Journal of the Transportation Research Board.

[64]  Enrique Frías-Martínez,et al.  Uncovering the spatial structure of mobility networks , 2015, Nature Communications.