Discrete complex analysis on isoradial graphs

Abstract We study discrete complex analysis and potential theory on a large family of planar graphs, the so-called isoradial ones. Along with discrete analogues of several classical results, we prove uniform convergence of discrete harmonic measures, Greenʼs functions and Poisson kernels to their continuous counterparts. Among other applications, the results can be used to establish universality of the critical Ising and other lattice models.

[1]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[2]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[3]  JON HANDY,et al.  THE LAPLACIAN AND DIRAC OPERATORS ON CRITICAL PLANAR GRAPHS , 2005 .

[4]  Representation conforme et transformations al integrale de Dirichlet bornee , 1956 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  S. P. Novikov,et al.  Geometry of the triangle equation on two-manifolds , 2002 .

[7]  Ulrike Bücking Approximation of conformal mappings by circle patterns , 2008 .

[8]  Yuri B. Suris,et al.  Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function , 2004, math/0402097.

[9]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.

[10]  C. Mercat Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.

[11]  Athanase Papadopoulos,et al.  Handbook of Teichmuller Theory , 2007 .

[12]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[13]  Stanislav Smirnov,et al.  Towards conformal invariance of 2D lattice models , 2007, 0708.0032.

[14]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[15]  Jean-Marc Schlenker,et al.  Rhombic embeddings of planar quad-graphs , 2004 .

[16]  Stanislav Smirnov,et al.  Discrete Complex Analysis and Probability , 2010, 1009.6077.

[17]  Discrete Polynomials and Discrete Holomorphic Approximation , 2002, math-ph/0206041.

[18]  R. J. Duffin,et al.  Potential theory on a rhombic lattice , 1968 .

[19]  R. J. Duffin,et al.  Discrete potential theory , 1953 .

[20]  Ulrike Bucking,et al.  Approximation of conformal mappings by circle patterns , 2008, 0806.3833.

[21]  Christian Mercat,et al.  Discrete Riemann Surfaces , 2007, 0802.1612.