Discrete complex analysis on isoradial graphs
暂无分享,去创建一个
[1] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[2] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[3] JON HANDY,et al. THE LAPLACIAN AND DIRAC OPERATORS ON CRITICAL PLANAR GRAPHS , 2005 .
[4] Representation conforme et transformations al integrale de Dirichlet bornee , 1956 .
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] S. P. Novikov,et al. Geometry of the triangle equation on two-manifolds , 2002 .
[7] Ulrike Bücking. Approximation of conformal mappings by circle patterns , 2008 .
[8] Yuri B. Suris,et al. Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function , 2004, math/0402097.
[9] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.
[10] C. Mercat. Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.
[11] Athanase Papadopoulos,et al. Handbook of Teichmuller Theory , 2007 .
[12] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[13] Stanislav Smirnov,et al. Towards conformal invariance of 2D lattice models , 2007, 0708.0032.
[14] C. Pommerenke. Boundary Behaviour of Conformal Maps , 1992 .
[15] Jean-Marc Schlenker,et al. Rhombic embeddings of planar quad-graphs , 2004 .
[16] Stanislav Smirnov,et al. Discrete Complex Analysis and Probability , 2010, 1009.6077.
[17] Discrete Polynomials and Discrete Holomorphic Approximation , 2002, math-ph/0206041.
[18] R. J. Duffin,et al. Potential theory on a rhombic lattice , 1968 .
[19] R. J. Duffin,et al. Discrete potential theory , 1953 .
[20] Ulrike Bucking,et al. Approximation of conformal mappings by circle patterns , 2008, 0806.3833.
[21] Christian Mercat,et al. Discrete Riemann Surfaces , 2007, 0802.1612.