Fundamental Insight into Humid CO2 Uptake in Direct Air Capture Nanocomposites Using Fluorescence and Portable NMR Relaxometry

[1]  Christopher W. Jones,et al.  Insights into the Oxidative Degradation Mechanism of Solid Amine Sorbents for CO2 Capture from Air: Roles of Atmospheric Water. , 2023, Angewandte Chemie.

[2]  Yihe Miao,et al.  Mixed Diethanolamine and Polyethyleneimine with Enhanced CO2 Capture Capacity from Air , 2023, Advanced science.

[3]  A. Maiti,et al.  Probing the Kinetic Origin of Varying Oxidative Stability of Ethyl- vs. Propyl-spaced Amines for Direct Air Capture. , 2022, ChemSusChem.

[4]  Nobutaka Maeda,et al.  Review on CO2 Capture Using Amine-Functionalized Materials , 2022, ACS omega.

[5]  B. Sumpter,et al.  Understanding the Impacts of Support-Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15. , 2022, Journal of the American Chemical Society.

[6]  T. Gennett,et al.  Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports , 2022, The Journal of Physical Chemistry C.

[7]  Miles A. Sakwa-Novak,et al.  Volatile Products of the Autoxidation of Poly(ethylenimine) in CO2 Sorbents , 2022, The Journal of Physical Chemistry C.

[8]  Nao Tsunoji,et al.  Amine-impregnated nanoarchitectonics of mesoporous silica for capturing dry and humid 400 ppm carbon dioxide: A comparative study , 2022, Microporous and Mesoporous Materials.

[9]  Ryan P. Lively,et al.  Sub-Ambient Temperature Direct Air Capture of CO2 using Amine-Impregnated MIL-101(Cr) Enables Ambient Temperature CO2 Recovery , 2022, JACS Au.

[10]  Ryan P. Lively,et al.  Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions , 2022, Korean Journal of Chemical Engineering.

[11]  D. Cole,et al.  CO2 Solubility in Aqueous Electrolyte Solutions Confined in Calcite Nanopores , 2021, The Journal of Physical Chemistry C.

[12]  Jennifer Wilcox,et al.  A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future , 2021, Progress in Energy.

[13]  T. Zawodzinski,et al.  Localized and Collective Dynamics in Liquid-like Polyethylenimine-Based Nanoparticle Organic Hybrid Materials , 2021 .

[14]  Duane D. Miller,et al.  Unraveling the Structure and Binding Energy of Adsorbed CO2/H2O on Amine Sorbents , 2020 .

[15]  Tonglei Li,et al.  Intracellular uptake of nanocrystals: Probing with aggregation-induced emission of fluorescence and kinetic modeling , 2020, Acta pharmaceutica Sinica. B.

[16]  A. Sayari,et al.  A Unified Approach to CO2–Amine Reaction Mechanisms , 2020, ACS omega.

[17]  Christopher W. Jones,et al.  Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO2 Capture from Simulated Air and Flue Gas Streams. , 2020, ACS applied materials & interfaces.

[18]  K. Lackner,et al.  Sorbents for Direct Capture of CO2 from Ambient Air. , 2020, Angewandte Chemie.

[19]  M. Mazzotti,et al.  The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry , 2020, Industrial & Engineering Chemistry Research.

[20]  J. Wurzbacher,et al.  The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions , 2019, Front. Clim..

[21]  Christopher W. Jones,et al.  Aminopolymer-Impregnated Hierarchical Silica Structures: Unexpected Equivalent CO2 Uptake under Simulated Air Capture and Flue Gas Capture Conditions , 2019, Chemistry of Materials.

[22]  N. Hedin,et al.  Perspectives on the adsorption of CO2 on amine-modified silica studied by infrared spectroscopy , 2019, Current Opinion in Green and Sustainable Chemistry.

[23]  Ryan P. Lively,et al.  Direct CO2 Capture from Air using Poly(ethylenimine)-Loaded Polymer/Silica Fiber Sorbents , 2019, ACS Sustainable Chemistry & Engineering.

[24]  M. Mende,et al.  Polymer Chain Mobility under Shear—A Rheo-NMR Investigation , 2018, Polymers.

[25]  Ian E. Jacobs,et al.  Side chain length affects backbone dynamics in poly(3‐alkylthiophene)s , 2018, Journal of Polymer Science Part B: Polymer Physics.

[26]  Rodney D. Priestley,et al.  21st Century Advances in Fluorescence Techniques to Characterize Glass‐Forming Polymers at the Nanoscale , 2018 .

[27]  Siva Umapathy,et al.  Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. , 2018, The Journal of chemical physics.

[28]  S. Chuang,et al.  Enhancing Degradation Resistance of Polyethylenimine for CO2 Capture with Cross-Linked Poly(vinyl alcohol) , 2017 .

[29]  Christopher W. Jones,et al.  Effect of Humidity on the CO2 Adsorption of Tertiary Amine Grafted SBA-15 , 2017 .

[30]  Christopher W. Jones,et al.  Aminopolymer Mobility and Support Interactions in Silica-PEI Composites for CO2 Capture Applications: A Quasielastic Neutron Scattering Study. , 2017, The journal of physical chemistry. B.

[31]  Christopher W. Jones,et al.  Role of Alumina Basicity in CO2 Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents. , 2017, ChemSusChem.

[32]  W. Thiel,et al.  Excited-State Decay Paths in Tetraphenylethene Derivatives , 2017, The journal of physical chemistry. A.

[33]  C. Roth,et al.  Local glass transition temperature Tg(z) of polystyrene next to different polymers: Hard vs. soft confinement. , 2017, The Journal of chemical physics.

[34]  Christopher W. Jones,et al.  Adsorption Microcalorimetry of CO2 in Confined Aminopolymers. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[35]  N. Hedin,et al.  Effects of carbon dioxide captured from ambient air on the infrared spectra of supported amines , 2016 .

[36]  Joel D. Kress,et al.  The Mechanism of CO2 Adsorption under Dry and Humid Conditions in Mesoporous Silica-Supported Amine Sorbents , 2016 .

[37]  J. Torkelson,et al.  Stiffness of thin, supported polystyrene films: Free-surface, substrate, and confinement effects characterized via self-referencing fluorescence , 2016 .

[38]  Christopher W. Jones,et al.  Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air. , 2016, ChemSusChem.

[39]  P. Dutta,et al.  Infrared Spectroscopic Study of Reaction of Carbon Dioxide with Aqueous Monoethanolamine Solutions , 2016 .

[40]  Christopher W. Jones,et al.  Role of Additives in Composite PEI/Oxide CO₂ Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO₂ Capture from Simulated Ambient Air. , 2015, ACS applied materials & interfaces.

[41]  Ryan T. K. Kwok,et al.  Aggregation-Induced Emission: Together We Shine, United We Soar! , 2015, Chemical reviews.

[42]  Christopher W. Jones,et al.  Linking CO2 Sorption Performance to Polymer Morphology in Aminopolymer/Silica Composites through Neutron Scattering. , 2015, Journal of the American Chemical Society.

[43]  Christopher W. Jones,et al.  Aziridine-Functionalized Mesoporous Silica Membranes on Polymeric Hollow Fibers: Synthesis and Single-Component CO2 and N2 Permeation Properties , 2015 .

[44]  B. Freeman,et al.  Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship , 2015 .

[45]  Christopher W. Jones,et al.  Effect of Amine Surface Coverage on the Co-Adsorption of CO2 and Water: Spectral Deconvolution of Adsorbed Species. , 2014, The journal of physical chemistry letters.

[46]  Barbara K. Hughes,et al.  Quenching of the perylene fluorophore by stable nitroxide radical-containing macromolecules. , 2014, The journal of physical chemistry. B.

[47]  W. C. Wilfong,et al.  In situ ATR and DRIFTS studies of the nature of adsorbed CO₂ on tetraethylenepentamine films. , 2014, ACS applied materials & interfaces.

[48]  Christopher W. Jones,et al.  Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air. , 2014, ACS applied materials & interfaces.

[49]  Santiago J. Garcia,et al.  Effect of polymer architecture on the intrinsic self-healing character of polymers , 2014 .

[50]  A. Sayari,et al.  CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. , 2012, Journal of the American Chemical Society.

[51]  Robert B. May,et al.  Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. , 2011, Journal of the American Chemical Society.

[52]  Christopher W. Jones,et al.  Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air , 2011 .

[53]  Hideki Tanaka,et al.  Unveiling thermal transitions of polymers in subnanometre pores , 2010, Nature communications.

[54]  G. McKenna,et al.  The stiffening of ultrathin polymer films in the rubbery regime: The relative contributions of membrane stress and surface tension , 2009 .

[55]  J. Perlo,et al.  Mobile single-sided NMR , 2008 .

[56]  Christopher J. Ellison,et al.  Fluorescence studies of confinement in polymer films and nanocomposites: Glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity , 2007 .

[57]  R. Gil,et al.  Structural mobility of molecular bottle-brushes investigated by NMR relaxation dynamics , 2007 .

[58]  G. Floudas,et al.  Effect of Confinement on Polymer Segmental Motion and Ion Mobility in PEO/Layered Silicate Nanocomposites , 2006 .

[59]  Linda J. Broadbelt,et al.  Structural Relaxation of Polymer Glasses at Surfaces, Interfaces, and In Between , 2005, Science.

[60]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[61]  Christopher J. Ellison,et al.  Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements , 2002, The European physical journal. E, Soft matter.

[62]  Meng Zhang,et al.  Thin-film differential scanning calorimetry: A new probe for assignment of the glass transition of ultrathin polymer films , 2002 .

[63]  Bernhard Blümich,et al.  The NMR MOUSE, a Mobile Universal Surface Explorer , 1996 .

[64]  P. Barbara,et al.  Direct measurements of tetraphenylethylene torsional motion by picosecond spectroscopy , 1981 .

[65]  Bernhard Blümich,et al.  Single-Sided NMR , 2011 .

[66]  Christopher J. Ellison,et al.  The distribution of glass-transition temperatures in nanoscopically confined glass formers , 2003, Nature materials.