Parametric approximations of nonparametric frontiers

The maximal achievable level of output for a given level of inputs defines the production frontier that can serve as benchmark to evaluate individual firm efficiencies. Nonparametric envelopment estimators (free disposal hull, data envelopment analysis) have been mostly used because they rely on very few assumptions, whereas parametric forms for the frontier allow for richer economic interpretation. Most of the parametric approaches rely on standard regression fitting the shape of the center of the cloud of points. In this paper, we investigated a new approach, which captures the shape of the cloud points near its boundary. It offers parametric approximations of nonparametric frontiers. We provide the statistical theory (asymptotic). Some simulated examples show the advantages of our method compared with the usual regression-type estimators. (C) 2004 Elsevier B.V. All rights reserved.

[1]  Per J. Agrell,et al.  A Caveat on the Measurement of Productive Efficiency , 2001 .

[2]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[3]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[4]  J. Zheng,et al.  A consistent test of functional form via nonparametric estimation techniques , 1996 .

[5]  P. W. Wilson,et al.  Statistical Inference in Nonparametric Frontier Models: The State of the Art , 1999 .

[6]  Bernard Thiry,et al.  Allowing for inefficiency in parametric estimation of production functions for urban transit firms , 1992 .

[7]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[8]  Suojin Wang,et al.  A simple consistent bootstrap test for a parametric regression function , 1998 .

[9]  Leâ Opold Simar,et al.  A general methodology for bootstrapping in non-parametric frontier models , 2000 .

[10]  P. Pestieau,et al.  Public Enterprise Economics.@@@The Performance of Public Enterprises: Concepts and Measurement. , 1987 .

[11]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[12]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[13]  Léopold Simar,et al.  Estimating efficiencies from frontier models with panel data: A comparison of parametric, non-parametric and semi-parametric methods with bootstrapping , 1992 .

[14]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[15]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[16]  J. Florens,et al.  GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS , 2000, Econometric Theory.

[17]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[18]  L. Simar,et al.  A note on the asymptotic relative efficiency of M.L.E. in a linear model with Gamma disturbances , 1985 .

[19]  P. Hall,et al.  Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error , 2002 .

[20]  A. Tsybakov,et al.  Efficient Estimation of Monotone Boundaries , 1995 .

[21]  W. Greene Maximum likelihood estimation of econometric frontier functions , 1980 .

[22]  Yanqin Fan,et al.  Consistent model specification tests : Omitted variables and semiparametric functional forms , 1996 .

[23]  H. Bierens Consistent model specification tests , 1982 .