On flag-transitive 2-(v, k, 2) designs

This paper is devoted to the classification of flag-transitive 2-(v,k,2) designs. We show that apart from two known symmetric 2-(16,6,2) designs, every flag-transitive subgroup G of the automorphism group of a nontrivial 2-(v,k,2) design is primitive of affine or almost simple type. Moreover, we classify the 2-(v,k,2) designs admitting a flag transitive almost simple group G with socle PSL(n,q) for some n \geq 3. Alongside this analysis, we give a construction for a flag-transitive 2-(v,k-1,k-2) design from a given flag-transitive 2-(v,k,1) design which induces a 2-transitive action on a line. Taking the design of points and lines of the projective space PG(n-1,3) as input to this construction yields a G-flag-transitive 2-(v,3,2) design where G has socle PSL(n,3) and v=(3^n-1)/2. Apart from these designs, our PSL-classification yields exactly one other example, namely the complement of the Fano plane.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  Cheryl E. Praeger,et al.  Cyclic Matrices Over Finite Fields , 1995 .

[3]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .

[4]  M. Liebeck On the Orders of Maximal Subgroups of the Finite Classical Groups , 1985 .

[5]  Shenglin Zhou,et al.  Flag-transitive point-primitive non-symmetric 2-(v,k,2) designs with alternating socle , 2016, 1603.00578.

[6]  Cheryl E. Praeger,et al.  Imprimitive flag-transitive symmetric designs , 2006, J. Comb. Theory, Ser. A.

[7]  Cheryl E. Praeger,et al.  A Recognition Algorithm For Classical Groups Over Finite Fields , 1998 .

[8]  Shenglin Zhou,et al.  Flag-transitive point-primitive automorphism groups of non-symmetric 2-(v, k, 3) designs , 2018, Des. Codes Cryptogr..

[9]  P. B. Kleidman,et al.  Linear spaces with flag-transitive automophism groups , 1990 .

[10]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type , 2008 .

[11]  Jan Saxl,et al.  On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups , 2002, J. Comb. Theory, Ser. A.

[12]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[13]  D. Holt,et al.  The Maximal Subgroups of the Low-Dimensional Finite Classical Groups , 2013 .

[14]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  Harriet Pollatsek,et al.  Automorphisms of designs , 2013 .

[16]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[17]  William M. Kantor,et al.  Homogeneous Designs and Geometric Lattices , 1985, J. Comb. Theory A.

[18]  Timothy C. Burness,et al.  Large subgroups of simple groups , 2013, 1311.6733.

[19]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[20]  Eugenia O'Reilly Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle , 2005, Eur. J. Comb..

[21]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[22]  Eugenia O'Reilly Regueiro On primitivity and reduction for flag-transitive symmetric designs , 2005, J. Comb. Theory A.

[23]  Cheryl E. Praeger,et al.  Permutation Groups and Cartesian Decompositions , 2018 .

[24]  Huw Davies Flag-transitivity and primitivity , 1987, Discret. Math..

[25]  D. G. Higman,et al.  Geometric $ABA$-groups , 1961 .

[26]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .