Potential energy function for apatites

An empirical potential energy function for fluor- and for hydroxyapatite is formulated and parametrised. The parameter optimisation involves a hierarchy of reference data and techniques comprising of quantum-chemical calculations for Coulomb interactions and intramolecular contributions, as well as experimental data and molecular dynamics simulations for the remaining nonbonded parameters. For fluorapatite both a flexible and a rigid phosphate model are derived, while for hydroxyapatite only the rigid variant is determined. Simulations with the final models reproduce the experimental crystal parameters within less than 1% deviation for a wide range of temperatures between 73 and 1273 K. In the case of flexible fluorapatite the computed and the experimental infrared spectra at 300 K agree excellently.

[1]  W. Lugt,et al.  Mechanism for Fluorine Inhibition of Diffusion in Hydroxyapatite , 1969, Nature.

[2]  R. Kniep,et al.  Biomimetic Growth and Self‐Assembly of Fluorapatite Aggregates by Diffusion into Denatured Collagen Matrices , 1996 .

[3]  M. Schlenkrich,et al.  Molecular dynamics simulation of zeolite NaY: a study of structure, dynamics, and thermalization of sorbates , 1992 .

[4]  Kenneth J. Miller,et al.  Linear dependency in the refinement of force constants with the Jacobian method , 1994, J. Comput. Chem..

[5]  Wilfred F. van Gunsteren,et al.  Determination of force field parameters for molecular simulation by molecular simulation: An application of the weak-coupling method , 1995 .

[6]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[7]  R. Kniep,et al.  Morphogenesis and Structure of Human Teeth in Relation to Biomimetically Grown Fluorapatite−Gelatine Composites , 2001 .

[8]  C. Jana,et al.  19F NMR spectroscopy of fluoridated apatites , 1995 .

[9]  R. Collin,et al.  Interionic forces and ionic polarization in alkaline earth halide crystals , 1974 .

[10]  Joachim Sauer,et al.  Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts , 1989 .

[11]  E. Kryachko,et al.  Conceptual Perspectives in Quantum Chemistry , 1997 .

[12]  H. Dufner,et al.  Ewald summation versus direct summation of shifted‐force potentials for the calculation of electrostatic interactions in solids: A quantitative study , 1997 .

[13]  P. H. Berens,et al.  Molecular dynamics and spectra. I. Diatomic rotation and vibration , 1981 .

[14]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[15]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[16]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[17]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[18]  J. Brickmann,et al.  Constant temperature molecular dynamics simulations by means of a stochastic collision model. II. The harmonic oscillator , 1996 .

[19]  M. Defranceschi,et al.  Electronic structure of minerals: The apatite group as a relevant example , 2000 .

[20]  Roland Faller,et al.  Automatic parameterization of force fields for liquids by simplex optimization , 1999 .

[21]  R. Berisio,et al.  Crystal structure of the collagen triple helix model [(Pro‐Pro‐Gly)10]3 , 2002, Protein science : a publication of the Protein Society.

[22]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[23]  Junmei Wang,et al.  Automatic parameterization of force field by systematic search and genetic algorithms , 2001, J. Comput. Chem..

[24]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[25]  T. Hamilton Conceptual Perspectives in Quantum Chemistry. Edited by J.-L. Calais and E. S. Kryachko. Kluwer Academic Publishers: Doredrecht, Netherlands. 1997. 553 pp. $395.00. ISBN 0-792-34688-2. , 1999 .

[26]  W. V. Gunsteren,et al.  Force field parametrization by weak coupling. Re-engineering SPC water , 1995 .

[27]  Per-Ola Norrby,et al.  Automated molecular mechanics parameterization with simultaneous utilization of experimental and quantum mechanical data , 1998 .

[28]  J. Ryckaert Special geometrical constraints in the molecular dynamics of chain molecules , 1985 .

[29]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .