Integrated inversion channel optoelectronic devices and circuit elements for multifunctional array applications

An approach to laser-based optoelectronic integration is described. It is shown that by using a single epitaxial growth structure and a common processing sequence, all the electrical and optical devices required for a complete optoelectronic integrated circuit (OEIC) are realized. The demonstrated individual device performance and the implementation of an integrated combination of devices are discussed. Such applications as the implementation of a basic building block for a 2*2 smart-pixel switching node are discussed. A comparison to other laser- and modulator-based approaches is presented. >

[1]  G. A. Vawter,et al.  Inverting and latching optical logic gates based on the integration of vertical-cavity surface-emitting lasers and photothyristors , 1992, IEEE Photonics Technology Letters.

[2]  G. W. Taylor,et al.  Optoelectronic resonant cavity technology based on inversion channel devices , 1992 .

[3]  S.R. Forrest Optoelectronic integrated circuits , 1987, Proceedings of the IEEE.

[4]  G. W. Taylor,et al.  A new double‐heterostructure optoelectronic switching device using molecular‐beam epitaxy , 1986 .

[5]  John E. Midwinter,et al.  Photonics in switching: the next 25 years of optical communications? , 1992 .

[6]  Ichiro Ogura,et al.  Current versus Light-Output Characteristics with No Definite Threshold in pnpn Vertical to Surface Transmission Electro-Photonic Devices with a Vertical Cavity , 1991 .

[7]  Geoffrey W. Taylor,et al.  Three-terminal operation of the double-heterostructure optoelectronic switching laser , 1991 .

[8]  A. Huang,et al.  Architectural considerations involved in the design of an optical digital computer , 1984, Proceedings of the IEEE.

[9]  T J Cloonan,et al.  Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices. , 1992, Applied optics.

[10]  J. A. Walker,et al.  GaAs-on-Si modulator using a buried silicide reflector , 1992, IEEE Photonics Technology Letters.

[11]  G. Taylor,et al.  Determination of the switching condition in the quantum-well double-heterostructure optoelectronic switch (DOES) , 1992 .

[12]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[13]  N. A. Olsson,et al.  Surface-Emitting Microlasers for Photonic Switching and Interchip Connections , 1990 .

[14]  S. Daryanani,et al.  Electronic/photonic inversion channel technology for optoelectronic ICs and photonic switching , 1991, Defense, Security, and Sensing.

[15]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[16]  T J Cloonan,et al.  Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes. , 1991, Applied optics.

[17]  Gerald M. Masson,et al.  A Sampler of Circuit Switching Networks , 1979, Computer.

[18]  Osamu Wada ADVANCES IN OPTOELECTRONIC INTEGRATION , 1990 .

[19]  S. Chandrasekhar,et al.  A 10 Gbit/s OEIC photoreceiver using InP/InGaAs heterojunction bipolar transistors , 1992 .

[20]  C. Burrus,et al.  Novel hybrid optically bistable switch: The quantum well self‐electro‐optic effect device , 1984 .

[21]  J. P. Harbison,et al.  Optically controlled surface‐emitting lasers , 1991 .

[22]  Larry A. Coldren,et al.  Lasing characteristics of a continuous‐wave operated folded‐cavity surface‐emitting laser , 1990 .

[23]  L. Coldren,et al.  InGaAs vertical-cavity surface-emitting lasers , 1991 .

[24]  M E Prise,et al.  Optical digital processor using arrays of symmetric self-electrooptic effect devices. , 1991, Applied optics.

[25]  Kenichi Kasahara,et al.  Vertical to surface transmission electrophotonic device with selectable output light channels , 1989 .

[26]  Kenichi Kasahara,et al.  Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption , 1988 .

[27]  G. W. Taylor,et al.  Ledistor—a three‐terminal double heterostructure optoelectronic switch , 1987 .

[28]  G. W. Taylor,et al.  High‐speed integrated heterojunction field‐effect transistor photodetector: A gated photodetector , 1987 .

[29]  Kenichi Kasahara,et al.  High Speed Response in Optoelectronic Gated Thyristor , 1987 .

[30]  Anthony L. Lentine,et al.  Architectural issues related to the optical implementation of an EGS network based on embedded control , 1992 .

[31]  D. Miller,et al.  Optical bistability in semiconductors , 1981 .

[32]  G. Taylor,et al.  Operation of a single quantum well heterojunction field‐effect photodetector , 1991 .

[33]  D. Welch,et al.  High-power grating-coupled surface emitters , 1989 .

[34]  S. Chandrasekhar,et al.  A 5 Gb/s monolithically integrated lightwave transmitter with 1.5 mu m multiple quantum well laser and HBT driver circuit , 1991, IEEE Photonics Technology Letters.

[35]  T. K. Woodward,et al.  Operation of a fully integrated GaAs-Al/sub x/Ga/sub 1-x/As FET-SEED: a basic optically addressed integrated circuit , 1992, IEEE Photonics Technology Letters.

[36]  D. L. Crawford,et al.  An n-channel BICFET in the GaAs/AlGaAs material system , 1989, IEEE Electron Device Letters.

[37]  G. Taylor,et al.  Demonstration of the heterostructure field‐effect transistor as an optical modulator , 1991 .