Electrochemical studies of the bis (triphenyl phosphine) ruthenium(II) complex, cis -[RuCl2(L)(PPh3)2], with L = 2-(2′-pyridyl)quinoxaline

Electrochemical studies of the newly synthesized bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2] (1, with L = 2-(2′-pyridyl)quinoxaline, C13N3H9), were performed in acetonitrile (ACN). For this purpose, cyclic voltammograms (CVs) as well as electrochemical impedance spectra (EIS) were recorded on either glassy carbon (GC), platinum (Pt), gold (Au), or multi-walled carbon nanotube (MWCNT) electrodes. Qualitative examination of solutions of 1 in ACN was performed on the basis of conductivity measurements and electrospray ionization mass spectrometry (ESI–MS). The conductivity data suggest that 1 is a 1 : 1 type electrolyte in ACN. The ESI spectra further demonstrate that upon dissolution of 1 in ACN progressive replacement of chloro- and PPh3-ligands by ACN occurs, leading to formation of [RuCl(L)(PPh3)(CH3CN)2]+Cl−, [2 + Cl − ]. The CVs recorded for [2 + Cl − ] on various working electrodes demonstrate that the reversibility of the redox couple 22 +/+ enhances with the order: Au < Pt < MWCNT < GC. The EI spectra verify that GC and MWCNT electrodes provide insignificant barrier for interfacial electron transfer since they afford less charge-transfer resistance.

[1]  U. Ritter,et al.  Synthesis and electrochemistry of multiwalled carbon nanotube films directly attached on silica substrate , 2010 .

[2]  R. Poddar,et al.  Ruthenium(II) and palladium(II) complexes with 2,6-(bispyrazol-1-yl)pyridines , 2010 .

[3]  Uwe Ritter,et al.  Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system , 2010 .

[4]  F. Fronczek,et al.  Synthesis, structure, and electrochemistry of mer[RuCl3(DMSO–S)(DMSO–O)(py)] , 2009 .

[5]  M. Trari,et al.  Electrochemical and photoelectrochemical characterization of CuFeO2 single crystal , 2009 .

[6]  P. Slavíček,et al.  Can electrospray mass spectrometry quantitatively probe speciation? Hydrolysis of uranyl nitrate studied by gas-phase methods. , 2009, Inorganic chemistry.

[7]  A. Philippopoulos,et al.  Conductometric and voltammetric studies on the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], where L: 2-(2'-pyridyl)quinoxaline , 2009 .

[8]  A. Philippopoulos,et al.  Studies of ion solvation and ion association of n-tetrabutylammonium hexafluorophosphate and n-tetrabutylammonium tetraphenylborate in various solvents , 2009 .

[9]  H. Schwarz,et al.  Solvation of copper(II) sulfate in binary water/N,N-dimethylformamide mixtures: from the solution to the gas phase. , 2008, The journal of physical chemistry. B.

[10]  P. Dyson,et al.  Ferrocenoyl pyridine arene ruthenium complexes with anticancer properties: synthesis, structure, electrochemistry, and cytotoxicity. , 2008, Inorganic chemistry.

[11]  N. Tsierkezos Conductivity Studies of n-Tetrabutylammonium Tetraphenylborate in Acetone and Acetonitrile in the Temperature Range from 283.15 to 303.15K , 2008 .

[12]  V. Catalano,et al.  Synthesis, Characterization, and Sensitizing Properties of Heteroleptic RuII Complexes Based on 2,6‐Bis(1‐pyrazolyl)pyr­idine and 2,2′‐Bipyridine‐4,4′‐dicarboxylic Acid Ligands , 2007 .

[13]  M. Valle,et al.  Carbon Nanotubes and Electrochemistry , 2007 .

[14]  R. Karvembu,et al.  Synthetic and catalytic investigations of ruthenium(III) complexes with triphenylphosphine/triphenylarsine and tridentate Schiff base , 2007 .

[15]  J. Míšek,et al.  Chiral superbases: the proton affinities of 1- and 2-aza[6]helicene in the gas phase. , 2007, Journal of mass spectrometry : JMS.

[16]  A. J. Blake,et al.  Synthesis, characterization, spectroscopic and electrochemical properties of trans,trans,trans-bis(triphenyl phosphine) bis(aroyl hydrazonato)ruthenium(II) complexes , 2007 .

[17]  D. Schröder,et al.  Bond-formation versus electron transfer: C-C-coupling reactions of hydrocarbon dications with benzene. , 2007, Physical chemistry chemical physics : PCCP.

[18]  Jonathan A. Faiz,et al.  Functional Supramolecular Ruthenium Cyclodextrin Dyes for Nanocrystalline Solar Cells , 2007 .

[19]  Stephen R. Wilson,et al.  Fullerene polypyridine ligands: synthesis, ruthenium complexes, and electrochemical and photophysical properties. , 2006, Chemistry.

[20]  V. D. Di Marco,et al.  Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. , 2006, Mass spectrometry reviews.

[21]  E. Sussuchi,et al.  Synthesis and electrochemical, spectral and catalytic properties of diphosphine–polypyridyl ruthenium complexes , 2006 .

[22]  N. Lopes,et al.  A study on the species present in solutions of hypervalent iodine(III) reagents by electrospray ionization mass spectrometry , 2005 .

[23]  P. Liska,et al.  Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells , 2005 .

[24]  R. Morris,et al.  Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes , 2004 .

[25]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[26]  Yancheng Zhang,et al.  Highly efficient lithium composite anode with hydrophobic molten salt in seawater , 2004 .

[27]  P. Rosa,et al.  Electronic properties of 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp) in the redox series fac-[Mn(Br)(CO)3(tmbp)], [Mn(CO)3(tmbp)]2, and [Mn(CO)3(tmbp)](-): crystallographic, spectroelectrochemical, and DFT computational study. , 2003, Inorganic chemistry.

[28]  Fatih Köleli,et al.  Electrochemical impedance spectroscopic investigation of CO2 reduction on polyaniline in methanol , 2003 .

[29]  S. A. Agnihotry,et al.  Impedance studies of Li inserted sol–gel-derived WO3 films , 2002 .

[30]  H. Schwarz,et al.  Dissociation behavior of Cu(urea)+ complexes generated by electrospray ionization , 2002 .

[31]  N. Tsierkezos,et al.  Transference Numbers, Conductance and Viscosity Studies of Copper Sulfate in Ethylene Glycol–Water Mixtures at 20 °C , 2002 .

[32]  Ryoji Noyori,et al.  Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. , 2001, Angewandte Chemie.

[33]  C. Enke,et al.  Practical implications of some recent studies in electrospray ionization fundamentals. , 2001, Mass spectrometry reviews.

[34]  K. Matyjaszewski,et al.  Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization , 2000 .

[35]  K. B. Oldham,et al.  Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high-resistance organic solvents , 2000, Analytical chemistry.

[36]  K. Natarajan,et al.  New ruthenium(III) complexes containing tetradentate Schiff bases and their antibacterial activity , 2000 .

[37]  N. Saha,et al.  Electrical Conductances of Some Symmetrical Tetraalkylammonium Salts in Methanol, Acetonitrile, and Methanol (1) + Acetonitrile (2) Mixtures at 298.15 K , 2000 .

[38]  A. V. Sechkarev,et al.  Intermolecular interactions in acetonitrile in a liquid and in a low-temperature argon matrix , 1999 .

[39]  C. N. R. Rao,et al.  Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ , 1999 .

[40]  Itamar Willner,et al.  Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay–Sachs sensor , 1999 .

[41]  A. Govindaraj,et al.  Large aligned-nanotube bundles from ferrocene pyrolysis , 1998 .

[42]  F. Teixidor,et al.  Cyclopropanation reactions catalysed by ruthenium complexes with new anionic phosphine ligands , 1997 .

[43]  Vincenzo Balzani,et al.  Luminescent and Redox-Active Polynuclear Transition Metal Complexes. , 1996, Chemical reviews.

[44]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[45]  B. James,et al.  A comparison of catalytic activity for imine hydrogenation using Ru ditertiary phosphine complexes, including chiral systems , 1994 .

[46]  G. Kalkanis,et al.  1:1 Metal complexes of 2-(2′-pyridyl)quinoxaline, a ligand unexpectedly formed by the reaction between 2-acetylpyridine and 1,2-phenylenediamine , 1993 .

[47]  E. Gileadi,et al.  Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists , 1993 .

[48]  S. Rettig,et al.  Synthesis, characterization and reactivity of some mono- and dinuclear chlororuthenium complexes containing chelating ditertiary phosphines (PP) with PP:Ru=1 , 1992 .

[49]  Michael T. Carter,et al.  Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine , 1989 .

[50]  R. Huggins Solid State Ionics , 1989 .

[51]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[52]  R. Wheaton,et al.  Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 3.—Examination of new model and analysis of data for symmetrical electrolytes , 1979 .

[53]  R. Wheaton,et al.  Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2.—Hydrodynamic terms and complete conductance equation , 1978 .

[54]  T. Matsubara,et al.  Some applications of cyclic voltammetry to the reactions and properties of ruthenium ammine complexes. Reduction potentials and rate studies , 1976 .

[55]  H. Siegenthaler,et al.  Synthesis and spectroelectrochemical properties of pentaammineruthenium(II) complexes of quinone diimines , 1975 .

[56]  R. W. Callahan,et al.  Effects of weak metal-metal interactions in ligand-bridged complexes of ruthenium. Dimeric complexes containing ruthenium ions in different coordination environments , 1975 .

[57]  H. Taube,et al.  Ruthenium promoted oxidation of amines , 1975 .

[58]  P. C. Ford,et al.  Base hydrolysis of coordinated organonitriles. Reactons of ruthenium(III) and rhodium(III) complexes , 1975 .

[59]  T. Meyer,et al.  Preparation of Pyrazine-Bridged, Polymeric Complexes of Ruthenium(II) , 1973 .

[60]  F. Anson,et al.  Formal potentials and cyclic voltammetry of some ruthenium-ammine complexes , 1972 .

[61]  T. Meyer,et al.  Ligand-Bridged Ruthenium Complexes , 1972 .

[62]  W. Geary The use of conductivity measurements in organic solvents for the characterisation of coordination compounds , 1971 .

[63]  P. Ford,et al.  Benzonitrile and acetonitrile complexes of ruthenium ammines , 1970 .

[64]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[65]  B. Foxman,et al.  Transition Metal Complexes of a Constrained Phosphite Ester. IV. Compounds of Cobalt(I), Cobalt(III), Nickel(II), and Nickel(0) , 1965 .

[66]  R. Walton The reactions of metal halides with alkyl cyanides , 1965 .

[67]  L. Vallarino,et al.  The Donor Properties of Positively Charged Ligands. Metal Complexes of the β-Aminoethyltrimethylammonium and γ-Aminopropyltrimethylammonium Cations , 1964 .

[68]  R. A. Hoodless,et al.  1082. Reaction of alkyl cyanides with chlorides and bromides of tervalent titanium and vanadium, and with vanadium(IV) chloride , 1963 .

[69]  R. Fuoss,et al.  Calibration of Conductance Cells at 25° with Aqueous Solutions of Potassium Chloride1 , 1959 .

[70]  J. Randles,et al.  A cathode ray polarograph. Part II.—The current-voltage curves , 1948 .