Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities

In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other variable. Such minimax optimization problems have attracted significant attention lately due to their applications in modern machine learning tasks. We first design and analyze the Zeroth-Order Gradient Descent Ascent (\texttt{ZO-GDA}) algorithm, and provide improved results compared to existing works, in terms of oracle complexity. Next, we propose the Zeroth-Order Gradient Descent Multi-Step Ascent (\texttt{ZO-GDMSA}) algorithm that significantly improves the oracle complexity of \texttt{ZO-GDA}. We also provide stochastic version of \texttt{ZO-GDA} and \texttt{ZO-GDMSA} to handle stochastic nonconvex minimax problems, and provide oracle complexity results.

[1]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[2]  Dimitris Bertsimas,et al.  Robust optimization with simulated annealing , 2010, J. Glob. Optim..

[3]  Jinfeng Yi,et al.  ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models , 2017, AISec@CCS.

[4]  Siwei Lyu,et al.  Stochastic Online AUC Maximization , 2016, NIPS.

[5]  Martin J. Wainwright,et al.  Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations , 2013, IEEE Transactions on Information Theory.

[6]  Renato D. C. Monteiro,et al.  On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean , 2010, SIAM J. Optim..

[7]  Charles Audet,et al.  Derivative-Free and Blackbox Optimization , 2017 .

[8]  G. Piliouras,et al.  Poincar\'e Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games , 2019 .

[9]  John Langford,et al.  A Reductions Approach to Fair Classification , 2018, ICML.

[10]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[11]  Ioannis Mitliagkas,et al.  A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games , 2019 .

[12]  Le Song,et al.  SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation , 2017, ICML.

[13]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[14]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[15]  Jason D. Lee,et al.  On the Convergence and Robustness of Training GANs with Regularized Optimal Transport , 2018, NeurIPS.

[16]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[17]  Haipeng Luo,et al.  Fast Convergence of Regularized Learning in Games , 2015, NIPS.

[18]  Yongxin Chen,et al.  Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems: Algorithms and Applications , 2019, IEEE Transactions on Signal Processing.

[19]  Le Song,et al.  Smoothed Dual Embedding Control , 2017, ArXiv.

[20]  Adam Tauman Kalai,et al.  Online convex optimization in the bandit setting: gradient descent without a gradient , 2004, SODA '05.

[21]  Volkan Cevher,et al.  Adversarially Robust Optimization with Gaussian Processes , 2018, NeurIPS.

[22]  J. Hammond Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms , 1984 .

[23]  Krishnakumar Balasubramanian,et al.  Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points , 2018, Foundations of Computational Mathematics.

[24]  Constantinos Daskalakis,et al.  Training GANs with Optimism , 2017, ICLR.

[25]  Tamer Basar,et al.  Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms , 2019, Handbook of Reinforcement Learning and Control.

[26]  David Pfau,et al.  Connecting Generative Adversarial Networks and Actor-Critic Methods , 2016, ArXiv.

[27]  Constantinos Daskalakis,et al.  The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization , 2018, NeurIPS.

[28]  Abhishek Roy,et al.  Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point Optimization , 2019, ArXiv.

[29]  Krishnakumar Balasubramanian,et al.  Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient Updates , 2018, NeurIPS.

[30]  Chen-Yu Wei,et al.  Online Reinforcement Learning in Stochastic Games , 2017, NIPS.

[31]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[32]  Stefan M. Wild,et al.  Derivative-free optimization methods , 2019, Acta Numerica.

[33]  Ioannis Mitliagkas,et al.  A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games , 2019, ArXiv.

[34]  Victor Picheny,et al.  A Bayesian optimization approach to find Nash equilibria , 2016, J. Glob. Optim..

[35]  Gauthier Gidel,et al.  A Variational Inequality Perspective on Generative Adversarial Networks , 2018, ICLR.

[36]  Christos H. Papadimitriou,et al.  Cycles in adversarial regularized learning , 2017, SODA.

[37]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[38]  Stefan M. Wild,et al.  Derivative-free robust optimization by outer approximations , 2018, Math. Program..

[39]  Michael I. Jordan,et al.  What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization? , 2019, ICML.

[40]  Leonard J. Schulman,et al.  Learning Dynamics and the Co-Evolution of Competing Sexual Species , 2017, ITCS.

[41]  Angelia Nedic,et al.  Subgradient Methods for Saddle-Point Problems , 2009, J. Optimization Theory and Applications.

[42]  Blake Lemoine,et al.  Mitigating Unwanted Biases with Adversarial Learning , 2018, AIES.

[43]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[44]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[45]  Prateek Jain,et al.  Efficient Algorithms for Smooth Minimax Optimization , 2019, NeurIPS.

[46]  Jun-Kun Wang,et al.  On Frank-Wolfe and Equilibrium Computation , 2017, NIPS.

[47]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[48]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[49]  Volkan Cevher,et al.  Finding Mixed Nash Equilibria of Generative Adversarial Networks , 2018, ICML.

[50]  Dawn Xiaodong Song,et al.  Delving into Transferable Adversarial Examples and Black-box Attacks , 2016, ICLR.

[51]  Jason D. Lee,et al.  Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods , 2019, NeurIPS.

[52]  Yurii Nesterov,et al.  Random Gradient-Free Minimization of Convex Functions , 2015, Foundations of Computational Mathematics.

[53]  Michael I. Jordan,et al.  Minmax Optimization: Stable Limit Points of Gradient Descent Ascent are Locally Optimal , 2019, ArXiv.

[54]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[55]  Haishan Ye,et al.  Stochastic Recursive Gradient Descent Ascent for Stochastic Nonconvex-Strongly-Concave Minimax Problems , 2020, NeurIPS.

[56]  Meisam Razaviyayn,et al.  Rényi Fair Inference , 2019, ICLR.

[57]  Georgios Piliouras,et al.  Multiplicative Weights Update in Zero-Sum Games , 2018, EC.

[58]  Karthik Sridharan,et al.  Optimization, Learning, and Games with Predictable Sequences , 2013, NIPS.

[59]  Sijia Liu,et al.  Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML , 2019, ArXiv.

[60]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[61]  Michael I. Jordan,et al.  On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems , 2019, ICML.

[62]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[63]  Zi Wang,et al.  Max-value Entropy Search for Efficient Bayesian Optimization , 2017, ICML.

[64]  Lu Zhang,et al.  FairGAN: Fairness-aware Generative Adversarial Networks , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[65]  Abdullah Al-Dujaili,et al.  On the Application of Danskin's Theorem to Derivative-Free Minimax Optimization , 2018, ArXiv.

[66]  Tony Jebara,et al.  Frank-Wolfe Algorithms for Saddle Point Problems , 2016, AISTATS.

[67]  Saeed Ghadimi,et al.  Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming , 2013, SIAM J. Optim..

[68]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[69]  Mingrui Liu,et al.  Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning , 2018, ArXiv.

[70]  Francis R. Bach,et al.  Stochastic Variance Reduction Methods for Saddle-Point Problems , 2016, NIPS.

[71]  Yin Tat Lee,et al.  Kernel-based methods for bandit convex optimization , 2016, STOC.

[72]  Ohad Shamir,et al.  An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback , 2015, J. Mach. Learn. Res..

[73]  Rahul Savani,et al.  Beyond Local Nash Equilibria for Adversarial Networks , 2018, BNCAI.

[74]  P. Tseng On linear convergence of iterative methods for the variational inequality problem , 1995 .

[75]  Aryan Mokhtari,et al.  A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach , 2019, AISTATS.

[76]  Georgios Piliouras,et al.  Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games , 2019, NeurIPS.