Evolution of Interfacial Phenomena Induced by Electrolyte Formulation and Hot Cycling of Anode-Free Li-Metal Batteries

[1]  Yingke Zhou,et al.  FEC Additive for Improved SEI Film and Electrochemical Performance of the Lithium Primary Battery , 2021, Energies.

[2]  B. Hwang,et al.  Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries , 2021, Nature Communications.

[3]  B. Hwang,et al.  Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries , 2021 .

[4]  Boyang Liu,et al.  Revealing the Role of Fluoride‐Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy , 2021, Advanced Energy Materials.

[5]  Taylor R. Garrick,et al.  Review—Lithium Plating Detection Methods in Li-Ion Batteries , 2020, Journal of The Electrochemical Society.

[6]  Chibueze V. Amanchukwu,et al.  Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries , 2020, Journal of the American Chemical Society.

[7]  B. Hwang,et al.  Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode‐Free Li‐Metal Battery , 2020, Advanced Functional Materials.

[8]  H. Dai,et al.  Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery , 2020 .

[9]  J. Goodenough,et al.  Thermodynamic Understanding of Li-Dendrite Formation , 2020 .

[10]  Q. Zhuang,et al.  Surface and Interface Modification of Electrode Materials for Lithium-Ion Batteries With Organic Liquid Electrolyte , 2020, Frontiers in Energy Research.

[11]  H. Fan,et al.  Dual-Carbon Batteries: Materials and Mechanism. , 2020, Small.

[12]  P. Mukherjee,et al.  Probing the Thermal Safety of Li Metal Batteries , 2020 .

[13]  Yu‐Guo Guo,et al.  Revealing Interfacial Evolution of Lithium Dendrite and Its Solid Electrolyte Interphase Shell in Quasi-Solid-State Lithium Batteries. , 2020, Angewandte Chemie.

[14]  B. Hwang,et al.  Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration , 2020 .

[15]  N. Choi,et al.  Dual Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries : Eco-Friendly Designed Carbonate Derivatives. , 2020, ACS applied materials & interfaces.

[16]  J. Connell,et al.  4-(Trimethylsilyl) Morpholine as a Multifunctional Electrolyte Additive in High Voltage Lithium Ion Batteries , 2020 .

[17]  Y. Gong,et al.  Large-Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. , 2020, Small.

[18]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[19]  B. Hwang,et al.  Nucleation and Growth Mechanism of Lithium Metal Electroplating. , 2019, Journal of the American Chemical Society.

[20]  B. Hwang,et al.  Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte , 2019, Journal of Power Sources.

[21]  Bing Sun,et al.  Temperature-dependent Nucleation and Growth of Dendrite-free Lithium Metal Anodes. , 2019, Angewandte Chemie.

[22]  Cyrus S. Rustomji,et al.  High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes , 2019, Joule.

[23]  H. Dai,et al.  Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries , 2019, Journal of The Electrochemical Society.

[24]  Shizhao Xiong,et al.  Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites , 2019, Energy Storage Materials.

[25]  Krishnan S. Hariharan,et al.  Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries , 2019, International Journal of Energy Research.

[26]  B. Hwang,et al.  Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. , 2019, ACS applied materials & interfaces.

[27]  Chengyi Song,et al.  Temperature effect and thermal impact in lithium-ion batteries: A review , 2018, Progress in Natural Science: Materials International.

[28]  Nam-Soon Choi,et al.  Scavenging Materials to Stabilize LiPF6‐Containing Carbonate‐Based Electrolytes for Li‐Ion Batteries , 2018, Advanced materials.

[29]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[30]  Y. Meng,et al.  Quantifying inactive lithium in lithium metal batteries , 2018, Nature.

[31]  L. Nazar,et al.  Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. , 2018, Angewandte Chemie.

[32]  Bin Liu,et al.  Advancing Lithium Metal Batteries , 2018 .

[33]  Hun‐Gi Jung,et al.  Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. , 2018, ACS applied materials & interfaces.

[34]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[35]  W. Choi,et al.  Graphene modified copper current collector for enhanced electrochemical performance of Li-ion battery , 2018 .

[36]  Wengao Zhao,et al.  Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO 2 F 2 salt-type additive and its working mechanism for LiNi 0.5 Mn 0.25 Co 0.25 O 2 cathodes , 2018 .

[37]  Taeeun Yim,et al.  Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes. , 2017, ACS applied materials & interfaces.

[38]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[39]  Samuel S. Cartmell,et al.  Wide-Temperature Electrolytes for Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[40]  Ya‐Xia Yin,et al.  Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. , 2017, Journal of the American Chemical Society.

[41]  G. Veith,et al.  A Novel Electrolyte Salt Additive for Lithium‐Ion Batteries with Voltages Greater than 4.7 V , 2017 .

[42]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[43]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[44]  Fernando A. Soto,et al.  Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries , 2015 .

[45]  J. Baldwin,et al.  Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode , 2015 .

[46]  Weishan Li,et al.  Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte , 2015 .

[47]  D. Abraham,et al.  Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells , 2012 .