Anomalous heat conduction behavior in thin finite-size silicon nanowires

Anomalous heat conduction behavior is observed for the first time using non-equilibrium molecular dynamics (NEMD) simulations to obtain the thermal conductivity of thin finite-size silicon nanowires (NWs) in the 001 lattice direction. In the series of simulations, the length dependence of thermal conductivity of thin silicon nanowires (NWs) ranging from 6 to 434 nm is analyzed. It is found that a transition occurs in the thermal conductivity versus length curve after the initial convergence trend appears near the mean free path of bulk silicon. Because no experimental measurements of thermal conductivity are available for sub-10 nm diameter silicon NWs, different NEMD methods are used to test and analyze this anomalous thermal behavior of thin Si NWs with different boundary conditions. The underlying mechanism of the observed behavior is inferred from MD simulations with different boundary conditions so that the anomalous behavior is mainly caused by border restriction and boundary scattering of the thin silicon NWs.

[1]  Wei Zhang,et al.  Length-dependent thermal conductivity of an individual single-wall carbon nanotube , 2007 .

[2]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[3]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[4]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[5]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[6]  Zhenan Tang,et al.  Evaluation of momentum conservation influence in non-equilibrium molecular dynamics methods to compute thermal conductivity , 2006 .

[7]  J. Shiomi,et al.  Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons , 2010 .

[8]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[9]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[10]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[11]  C. L. Tien,et al.  Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity , 1998, Heat Transfer.

[12]  Dirk Reith,et al.  Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics: An Easy Route to Transport Coefficients , 1999 .

[13]  Madhu Menon,et al.  Thermal conductivity in thin silicon nanowires: phonon confinement effect. , 2007, Nano letters.

[14]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[15]  Deyu Li,et al.  Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires , 2004 .

[16]  S. Volz,et al.  CLAMPED NANOWIRE THERMAL CONDUCTIVITY BASED ON PHONON TRANSPORT EQUATION , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[17]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[18]  T. Ikeshoji,et al.  Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface , 1994 .

[19]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[20]  J. Chu,et al.  Size effect on the thermal conductivity of nanowires , 2002 .

[21]  A. Majumdar,et al.  Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity , 2005 .

[22]  C. Tien,et al.  MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTION IN NANOPOROUS THIN FILMS , 2004 .

[23]  Arun Majumdar,et al.  Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study , 2002 .

[24]  Xin-gang Liang,et al.  Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices , 2000 .

[25]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[26]  Denis Lemonnier,et al.  Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires , 2006 .

[27]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[28]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[29]  Phonon heat transport in silicon nanowires , 2002 .

[30]  Arun Majumdar,et al.  Transient ballistic and diffusive phonon heat transport in thin films , 1993 .

[31]  Taku Ohara,et al.  Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations , 2009 .

[32]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[33]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[34]  Zhixin Li,et al.  Molecular dynamics study on thermal conductivity of nanoscale thin films , 2001 .

[35]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[36]  Giulia Galli,et al.  Atomistic simulations of heat transport in silicon nanowires. , 2009, Physical review letters.

[37]  Alan J. H. McGaughey,et al.  Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. , 2006 .