Visual Control of Altitude in Flying Drosophila

[1]  J. Kennedy,et al.  The migration of the Desert Locust (Schistocerca gregaria Forsk.) I. The behaviour of swarms. II. A theory of long-range migrations , 1951, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[2]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[3]  C. David,et al.  Optomotor control of speed and height by free-flying Drosophila. , 1979, The Journal of experimental biology.

[4]  C. T. David Height control by free‐flying Drosophila , 1979 .

[5]  C. David,et al.  The dynamics of height stabilization in Drosophila , 1984 .

[6]  C. David Visual control of the partition of flight force between lift and thrust in free-flying Drosophila , 1985, Nature.

[7]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[8]  J. Zanker,et al.  On the mechanism of speed and altitude control in Drosophila melanogaster , 1988 .

[9]  P. Simmons,et al.  Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. , 1992, Journal of neurophysiology.

[10]  D. N. Reye,et al.  WING MOVEMENTS ASSOCIATED WITH COLLISIONAVOIDANCE MANOEUVRES DURING FLIGHT IN THE LOCUST LOCUSTA MIGRATORIA , 1992 .

[11]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[12]  R. Strauss,et al.  Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[13]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[14]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[15]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[16]  C. Wehrhahn,et al.  The angular orientation of the movement detectors acting on the flight lift response in flies , 1978, Biological Cybernetics.

[17]  P. S. Baker Flying locust visual responses in a radial wind tunnel , 2004, Journal of comparative physiology.

[18]  Rüdiger Wehner,et al.  The mechanism of visual pattern fixation in the walking fly,Drosophila melanogaster , 1975, Journal of comparative physiology.

[19]  Werner Reichardt,et al.  Optical detection and fixation of objects by fixed flying flies , 1969, Naturwissenschaften.

[20]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[21]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[22]  T. S. Collett,et al.  Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.

[23]  Werner Reichardt,et al.  Visually induced height orientation of the fly Musca domestica , 1975, Biological Cybernetics.

[24]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[25]  M Egelhaaf,et al.  On the Computations Analyzing Natural Optic Flow: Quantitative Model Analysis of the Blowfly Motion Vision Pathway , 2005, The Journal of Neuroscience.

[26]  M. Srinivasan,et al.  Visual control of flight speed in honeybees , 2005, Journal of Experimental Biology.

[27]  K. Kawachi,et al.  Response characteristics of visual altitude control system in Bombus terrestris , 2006, Journal of Experimental Biology.

[28]  N. Franceschini,et al.  A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities , 2007, Current Biology.

[29]  Andrew D. Straw,et al.  Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.

[30]  Michael H. Dickinson,et al.  TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies , 2008, Journal of Neuroscience Methods.

[31]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[32]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[33]  David C. O'Carroll,et al.  Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology , 2009, PLoS Comput. Biol..

[34]  S. N. Fry,et al.  Visual control of flight speed in Drosophila melanogaster , 2009, Journal of Experimental Biology.

[35]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .

[36]  Michael H. Dickinson,et al.  Multi-camera real-time three-dimensional tracking of multiple flying animals , 2010, Journal of The Royal Society Interface.

[37]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[38]  N. Franceschini,et al.  Honeybees change their height to restore their optic flow , 2010, Journal of Comparative Physiology A.

[39]  Steven N Fry,et al.  Frequency response of lift control in Drosophila , 2010, Journal of The Royal Society Interface.

[40]  Don R. Reynolds,et al.  Flight Orientation Behaviors Promote Optimal Migration Trajectories in High-Flying Insects , 2010, Science.

[41]  M. Dickinson,et al.  Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception , 2010, Journal of Experimental Biology.