Electrical Characteristics of GaAs Nanowire-Based MESFETs on Flexible Plastics

GaAs nanowire (NW)-based metal-semiconductor field-effect transistors (MESFETs) were constructed on flexible plastic substrates by a conventional top-down approach. The top-down approach utilized in this paper combines photolithography of high-quality GaAs bulk wafers with anisotropic chemical etching processes for preparation of GaAs NWs and photolithographic processes for formation of metal electrodes. For a representative GaAs NW-based MESFET, peak transconductance, the Ion/Ioff ratio, and the subthreshold slope are estimated to be approximately 19.7 S, ~107, and ~100 mV/dec, respectively. The electrical characteristics of the GaAs NW-based MESFETs were maintained during 3000 times of bending cycles under maximal tensile strains of 0.77% and 1.02%. These results demonstrate the possibility of using these devices in high-speed and high-performance flexible electronics.

[1]  Scott E. Thompson,et al.  Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs , 2009 .

[2]  S. Fortuna,et al.  GaAs FET with a high mobility self-assembled planar nanowire channel on a (100) substrate , 2009, 2009 Device Research Conference.

[3]  K. Bertness,et al.  MESFETs Made From Individual GaN Nanowires , 2008, IEEE Transactions on Nanotechnology.

[4]  T. Fukui,et al.  Electrical Characterizations of InGaAs Nanowire-Top-Gate Field-Effect Transistors by Selective-Area Metal Organic Vapor Phase Epitaxy , 2007 .

[5]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[6]  Walter Riess,et al.  Vertical surround-gated silicon nanowire impact ionization field-effect transistors , 2007 .

[7]  U. Chung,et al.  Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. , 2006, Nano letters.

[8]  John A Rogers,et al.  A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. , 2005, Small.

[9]  D. Janes,et al.  Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. , 2005, Nano letters.

[10]  John A. Rogers,et al.  Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates , 2005 .

[11]  Eric M. Vogel,et al.  High inversion current in silicon nanowire field effect transistors , 2004 .

[12]  John A. Rogers,et al.  Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates , 2004 .

[13]  Harry E. Ruda,et al.  Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy , 2002 .

[14]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[15]  Xiangfeng Duan,et al.  Synthesis and optical properties of gallium arsenide nanowires , 2000 .

[16]  R. Goldman,et al.  Correlation of buffer strain relaxation modes with transport properties of two‐dimensional electron gases , 1996 .

[17]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[18]  E. Fitzgerald,et al.  Comparison of mobility‐limiting mechanisms in high‐mobility Si1−xGex heterostructures , 1993 .

[19]  I. Zubel,et al.  Chemical etching of (100) GaAs in a sulphuric acid-hydrogen peroxide-water system , 1987 .

[20]  T. Jackson,et al.  Fermi-Level Pinning by Misfit Dislocations at GaAs Interfaces , 1983 .

[21]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[22]  J. Pendry,et al.  Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks , 2001 .

[23]  C. Chang,et al.  GaAs high-speed devices : physics, technology, and circuit applications , 1994 .

[24]  J. Graffeuil,et al.  Applications of GaAs MESFETs , 1983 .