Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology

Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemical routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.

[1]  Kai Zhu,et al.  Perovskite Solar Cells—Towards Commercialization , 2017 .

[2]  Anders Hagfeldt,et al.  The End-of-Life of Perovskite PV , 2017 .

[3]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[4]  Yue Hu,et al.  Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule , 2018, Advanced materials.

[5]  Mike Hambsch,et al.  Efficient, monolithic large area organohalide perovskite solar cells , 2016 .

[6]  Paul A. Basore,et al.  A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules , 2017 .

[7]  Xudong Yang,et al.  Cost‐Performance Analysis of Perovskite Solar Modules , 2016, Advanced science.

[8]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[9]  Ilke Celik,et al.  A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques , 2017 .

[10]  Junwoo Lee,et al.  Green-Solvent-Processable, Dopant-Free Hole-Transporting Materials for Robust and Efficient Perovskite Solar Cells. , 2017, Journal of the American Chemical Society.

[11]  Henry J. Snaith,et al.  A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films , 2017 .

[12]  Erik M. J. Johansson,et al.  Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications , 2018 .

[13]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[14]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[15]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[16]  Kai Zhu,et al.  Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells , 2015 .

[17]  Hongkyu Kang,et al.  Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating , 2016 .

[18]  Nripan Mathews,et al.  A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability , 2016 .

[19]  Yue Hu,et al.  Stable Large‐Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency , 2017 .

[20]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[21]  Tsutomu Miyasaka,et al.  Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. , 2015, Chemical communications.

[22]  Dimitrios Raptis,et al.  Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material , 2015 .

[23]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[24]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[25]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[26]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[27]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[28]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[29]  Paul Heremans,et al.  Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics , 2016 .

[30]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[31]  Dinghan Shen,et al.  Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells , 2014 .

[32]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[33]  Kai Zhu,et al.  Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization , 2018 .

[34]  Bruce W. Alphenaar,et al.  Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment , 2016 .

[35]  Bin Fan,et al.  Large area perovskite solar cell module , 2017 .

[36]  Ramón Tena-Zaera,et al.  Dimethylformamide-free processing of halide perovskite solar cells from electrodeposited PbI2 precursor films , 2017 .

[37]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[38]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[39]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[40]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[41]  Rongrong Cheacharoen,et al.  Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling , 2018 .

[42]  Aldo Di Carlo,et al.  High efficiency photovoltaic module based on mesoscopic organometal halide perovskite , 2016 .

[43]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[44]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[45]  Gao Lili,et al.  Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air , 2017 .

[46]  Tongle Bu,et al.  Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells , 2017 .

[47]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[48]  Xiaofan Deng,et al.  Overcoming the challenges of large-area high-efficiency perovskite solar cells , 2017 .

[49]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[50]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[51]  Kai Zhu,et al.  Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology , 2017 .

[52]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[53]  Xiang Fang,et al.  A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices , 2015 .

[54]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[55]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[56]  Yan Li,et al.  Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method. , 2016, ACS applied materials & interfaces.

[57]  Bin Ding,et al.  Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate , 2016 .

[58]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[59]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[60]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[61]  Dimitrios Raptis,et al.  Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules , 2015 .

[62]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[63]  Qingfeng Dong,et al.  Composition Engineering in Doctor‐Blading of Perovskite Solar Cells , 2017 .

[64]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[65]  Garry Rumbles,et al.  300% Enhancement of Carrier Mobility in Uniaxial‐Oriented Perovskite Films Formed by Topotactic‐Oriented Attachment , 2017, Advanced materials.

[66]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.